403 research outputs found

    Correlated Strength in Nuclear Spectral Function

    Full text link
    We have carried out an (e,e'p) experiment at high momentum transfer and in parallel kinematics to measure the strength of the nuclear spectral function S(k,E) at high nucleon momenta k and large removal energies E. This strength is related to the presence of short-range and tensor correlations, and was known hitherto only indirectly and with considerable uncertainty from the lack of strength in the independent-particle region. This experiment confirms by direct measurement the correlated strength predicted by theory.Comment: 4 pages, 2 figures, accepted by Phys. Rev. Let

    First measurements of the ^16O(e,e'pn)^14N reaction

    Get PDF
    This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution was sufficient to distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data.Comment: 10 pages, 11 figures, 2 tables, Accepted for publication in EPJ

    A Measurement of the Electric Form Factor of the Neutron through d(e,en)p\vec{d}(\vec{e},e'n)p at Q2=0.5Q^2 = 0.5 (GeV/c)2^2

    Full text link
    We report the first measurement of the neutron electric form factor GEnG_E^n via d(e,en)p\vec{d}(\vec{e},e'n)p using a solid polarized target. GEnG_E^n was determined from the beam-target asymmetry in the scattering of longitudinally polarized electrons from polarized deuterated ammonia, 15^{15}ND3_3. The measurement was performed in Hall C at Thomas Jefferson National Accelerator Facility (TJNAF) in quasi free kinematics with the target polarization perpendicular to the momentum transfer. The electrons were detected in a magnetic spectrometer in coincidence with neutrons in a large solid angle segmented detector. We find GEn=0.04632±0.00616(stat.)±0.00341(syst.)G_E^n = 0.04632\pm0.00616 (stat.) \pm0.00341 (syst.) at Q2=0.495Q^2 = 0.495 (GeV/c)2^2.Comment: Latex2e 5 pages, 3 figure

    Longitudinal-Transverse Separations of Structure Functions at Low Q2Q^{2} for Hydrogen and Deuterium

    Get PDF
    We report on a study of the longitudinal to transverse cross section ratio, R=σL/σTR=\sigma_L/\sigma_T, at low values of xx and Q2Q^{2}, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 <Q2<2.8 < Q^{2} < 2.8 GeV2^{2}. Even at the lowest values of Q2Q^{2}, RR remains nearly constant and does not disappear with decreasing Q2Q^{2}, as expected. We find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    Full text link
    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1x>1, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie

    Cross Section Measurement of Charged Pion Photoproduction from Hydrogen and Deuterium

    Get PDF
    We have measured the differential cross section for the gamma n --> pi- p and gamma p --> pi+ n reactions at center of mass angle of 90 degree in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at photon energies greater than 3.3 GeV exhibit a global scaling behavior for both pi- and pi+ photoproduction, consistent with the constituent counting rule and the existing pi+ photoproduction data. Possible oscillations around the scaling value are suggested by these new data The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi- to pi+ photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams
    corecore