2,086 research outputs found

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure

    Echoes in classical dynamical systems

    Full text link
    Echoes arise when external manipulations to a system induce a reversal of its time evolution that leads to a more or less perfect recovery of the initial state. We discuss the accuracy with which a cloud of trajectories returns to the initial state in classical dynamical systems that are exposed to additive noise and small differences in the equations of motion for forward and backward evolution. The cases of integrable and chaotic motion and small or large noise are studied in some detail and many different dynamical laws are identified. Experimental tests in 2-d flows that show chaotic advection are proposed.Comment: to be published in J. Phys.

    Bifurcations and Complete Chaos for the Diamagnetic Kepler Problem

    Full text link
    We describe the structure of bifurcations in the unbounded classical Diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the non-wandering set is described by a complete trinary symbolic dynamics for scaled energies larger then ϵc=0.328782\epsilon_c=0.328782\ldots.Comment: 15 pages PostScript uuencoded with figure

    On-the-fly memory compression for multibody algorithms.

    Get PDF
    Memory and bandwidth demands challenge developers of particle-based codes that have to scale on new architectures, as the growth of concurrency outperforms improvements in memory access facilities, as the memory per core tends to stagnate, and as communication networks cannot increase bandwidth arbitrary. We propose to analyse each particle of such a code to find out whether a hierarchical data representation storing data with reduced precision caps the memory demands without exceeding given error bounds. For admissible candidates, we perform this compression and thus reduce the pressure on the memory subsystem, lower the total memory footprint and reduce the data to be exchanged via MPI. Notably, our analysis and transformation changes the data compression dynamically, i.e. the choice of data format follows the solution characteristics, and it does not require us to alter the core simulation code

    Semiclassical Quantization by Pade Approximant to Periodic Orbit Sums

    Full text link
    Periodic orbit quantization requires an analytic continuation of non-convergent semiclassical trace formulae. We propose a method for semiclassical quantization based upon the Pade approximant to the periodic orbit sums. The Pade approximant allows the re-summation of the typically exponentially divergent periodic orbit terms. The technique does not depend on the existence of a symbolic dynamics and can be applied to both bound and open systems. Numerical results are presented for two different systems with chaotic and regular classical dynamics, viz. the three-disk scattering system and the circle billiard.Comment: 7 pages, 3 figures, submitted to Europhys. Let

    Semiclassical cross section correlations

    Full text link
    We calculate within a semiclassical approximation the autocorrelation function of cross sections. The starting point is the semiclassical expression for the diagonal matrix elements of an operator. For general operators with a smooth classical limit the autocorrelation function of such matrix elements has two contributions with relative weights determined by classical dynamics. We show how the random matrix result can be obtained if the operator approaches a projector onto a single initial state. The expressions are verified in calculations for the kicked rotor.Comment: 6 pages, 2 figure

    Approach to ergodicity in quantum wave functions

    Full text link
    According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wavefunctions of classically ergodic systems tend to the microcanonical density on the energy shell. We here develop a semiclassical theory that relates the rate of approach to the decay of certain classical fluctuations. For uniformly hyperbolic systems we find that the variance of the quantum matrix elements is proportional to the variance of the integral of the associated classical operator over trajectory segments of length THT_H, and inversely proportional to TH2T_H^2, where TH=hρˉT_H=h\bar\rho is the Heisenberg time, ρˉ\bar\rho being the mean density of states. Since for these systems the classical variance increases linearly with THT_H, the variance of the matrix elements decays like 1/TH1/T_H. For non-hyperbolic systems, like Hamiltonians with a mixed phase space and the stadium billiard, our results predict a slower decay due to sticking in marginally unstable regions. Numerical computations supporting these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.Comment: 11 pages postscript and 4 figures in two files, tar-compressed and uuencoded using uufiles, to appear in Phys Rev E. For related papers, see http://www.icbm.uni-oldenburg.de/icbm/kosy/ag.htm

    How does flow in a pipe become turbulent?

    Full text link
    The transition to turbulence in pipe flow does not follow the scenario familiar from Rayleigh-Benard or Taylor-Couette flow since the laminar profile is stable against infinitesimal perturbations for all Reynolds numbers. Moreover, even when the flow speed is high enough and the perturbation sufficiently strong such that turbulent flow is established, it can return to the laminar state without any indication of the imminent decay. In this parameter range, the lifetimes of perturbations show a sensitive dependence on initial conditions and an exponential distribution. The turbulence seems to be supported by three-dimensional travelling waves which appear transiently in the flow field. The boundary between laminar and turbulent dynamics is formed by the stable manifold of an invariant chaotic state. We will also discuss the relation between observations in short, periodically continued domains, and the dynamics in fully extended puffs.Comment: for the proceedings of statphys 2

    Statistical properties of energy levels of chaotic systems: Wigner or non-Wigner

    Full text link
    For systems whose classical dynamics is chaotic, it is generally believed that the local statistical properties of the quantum energy levels are well described by Random Matrix Theory. We present here two counterexamples - the hydrogen atom in a magnetic field and the quartic oscillator - which display nearest neighbor statistics strongly different from the usual Wigner distribution. We interpret the results with a simple model using a set of regular states coupled to a set of chaotic states modeled by a random matrix.Comment: 10 pages, Revtex 3.0 + 4 .ps figures tar-compressed using uufiles package, use csh to unpack (on Unix machine), to be published in Phys. Rev. Let
    corecore