383 research outputs found

    Structure and three-body decay of 9^9Be resonances

    Get PDF
    The complex-rotated hyperspherical adiabatic method is used to study the decay of low-lying 9^9Be resonances into one neutron and two α\alpha-particles. We investigate the six resonances above the break-up threshold and below 6 MeV: 1/2±1/2^\pm, 3/2±3/2^\pm and 5/2±5/2^\pm. The short-distance properties of each resonance are studied, and the different angular momentum and parity configurations of the 8^8Be and 5^5He two-body substructures are determined. We compute the branching ratio for sequential decay via the 8^8Be ground state which qualitatively is consistent with measurements. We extract the momentum distributions after decay directly into the three-body continuum from the large-distance asymptotic structures. The kinematically complete results are presented as Dalitz plots as well as projections on given neutron and α\alpha-energy. The distributions are discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review

    On radiative np -> 1s + gamma transitions, induced by strong low-energy interactions,in kaonic atoms

    Full text link
    We calculate the rates of the radiative transitions np -> 1s + gamma in kaonic hydrogen and kaonic deuterium, induced by strong low-energy interactions and enhanced by Coulomb interactions. The obtained results should be taken into account for the theoretical analysis of the experimental data on the X-ray spectra and yields in kaonic atoms.Comment: 10 pages, 1 figur

    Energy-sensitive imaging detector applied to the dissociative recombination of D2H+

    Full text link
    We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.Comment: 11 pages, 12 figures, submitted to Physical Review

    Photoproduction evidence for and against hidden-strangeness states near 2 GeV

    Get PDF
    Experimental evidence from coherent diffractive proton scattering has been reported for two narrow baryonic resonances which decay predominantly to strange particles. These states, with masses close to 2.0 GeV would, if confirmed, be candidates for hidden strangeness states with unusual internal structure. In this paper we examine the literature on strangeness photoproduction, to seek additional evidence for or against these states. We find that one state is not confirmed, while for the other state there is some mild supporting evidence favoring its existence. New experiments are called for, and the expected photoproduction lineshapes are calculated.Comment: 9 pages, RevTex, five postscript figures, submitted to PR

    Topology in Physics - A Perspective

    Full text link
    This article, written in honor of Fritz Rohrlich, briefly surveys the role of topology in physics.Comment: 16pp, 2 figures included (encapsulated postscript

    Consistency of Lambda-Lambda hypernuclear events

    Full text link
    Highlights of Lambda-Lambda emulsion events are briefly reviewed. Given three accepted events, shell-model predictions based on p-shell Lambda hypernuclear spectroscopic studies are shown to reproduce the Lambda-Lambda (LL) binding energies of LL10Be and LL13B in terms of the LL binding energy of LL6He. Predictions for other species offer judgement on several alternative assignments of the LL13B KEK-E176 event, and on the assignments LL11Be and LL12Be suggested recently for the KEK-E373 HIDA event. The predictions of the shell model, spanning a wide range of A values, are compared with those of cluster models, where the latter are available.Comment: Based on talk given by Avraham Gal at EXA 2011, Vienna, September 2011; Proceedings version prepared for the journal Hyperfine Interactions; v2--slight changes, matches published versio

    Branching ratio change in K- absorption at rest and the nature of the Lambda(1405)

    Full text link
    We investigate in-medium corrections to the branching ratio in K- absorption at rest and their effect on the (positively and negatively) charged pion spectrum. The in-medium corrections are due to Pauli blocking, which arises if the Lambda(1405) is assumed to be a Kˉ\bar{K}-nucleon bound state and leads to a density and momentum dependent mass shift of the Lambda(1405). Requiring that the optical potential as well as the branching ratio are derived from the same elementary T-matrix, we find that the in-medium corrected, density dependent T-matrix gives a better description of the K- absorption reaction than the free, density-independent one. This result suggests that the dominant component of the Lambda(1405) wave function is the KˉN\bar{K}N bound state.Comment: 8 Pages, Revtex with epsf, and embedded 8 ps figure

    Unitarization of Gluon Exchange Amplitudes and Rapidity Gaps at the Tevatron

    Get PDF
    Rapidity gaps between two hard jets at the Tevatron have been interpreted as being due to the exchange of two gluons which are in an overall color-singlet state. We show that this simple picture involves unitarity violating amplitudes. Unitarizing the gluon exchange amplitude leads to qualitatively different predictions for the fraction of tt-channel color singlet exchange events in forward qqqq, qgqg or gggg scattering, which better fit Tevatron data.Comment: 21 pages, Revtex, 7 postscript figures included via epsf.sty. Compressed postscript file of complete paper also available at http://pheno.physics.wisc.edu/pub/preprints/1998/madph-98-1024.ps.Z or at ftp://pheno.physics.wisc.edu/pub/preprints/1998/madph-98-1024.ps.
    corecore