17,764 research outputs found

    Permutation Classes of Polynomial Growth

    Full text link
    A pattern class is a set of permutations closed under the formation of subpermutations. Such classes can be characterised as those permutations not involving a particular set of forbidden permutations. A simple collection of necessary and sufficient conditions on sets of forbidden permutations which ensure that the associated pattern class is of polynomial growth is determined. A catalogue of all such sets of forbidden permutations having three or fewer elements is provided together with bounds on the degrees of the associated enumerating polynomials.Comment: 17 pages, 4 figure

    The EMC of satellite power systems and DoD C-E systems

    Get PDF
    The solar power satellite (SPS) technical parameters that are needed to accurately assess the electromagnetic compatibility (EMC) between SPS systems and DoD communications-electronics (C-E) systems are identified and assessed. The type of electromagnetic interactions that could degrade the performance of C-E systems are described and the major military installations in the southwestern portions of CONUS where specially sensitive C-E systems are being used for combat training and evaluation are identified. Classes of C-E systems that are generally in the vicinity of these military installations are considered. The Technical parameters that govern the degree of compatibility of the SPS with these C-E systems, and some technical requirements that are necessary to ensure short-term and long-term EMC are identified

    Sorting with a forklift

    Full text link
    A fork stack is a generalised stack which allows pushes and pops of several items at a time. We consider the problem of determining which input streams can be sorted using a single forkstack, or dually, which permutations of a fixed input stream can be produced using a single forkstack. An algorithm is given to solve the sorting problem and the minimal unsortable sequences are found. The results are extended to fork stacks where there are bounds on how many items can be pushed and popped at one time. In this context we also establish how to enumerate the collection of sortable sequences.Comment: 24 pages, 2 figure

    The enumeration of three pattern classes using monotone grid classes

    Get PDF
    The structure of the three pattern classes defined by the sets of forbidden permutations \{2143,4321\}, \{2143,4312\} and \{1324,4312\} is determined using the machinery of monotone grid classes. This allows the permutations in these classes to be described in terms of simple diagrams and regular languages and, using this, the rational generating functions which enumerate these classes are determined

    Subclasses of the separable permutations

    Full text link
    We prove that all subclasses of the separable permutations not containing Av(231) or a symmetry of this class have rational generating functions. Our principal tools are partial well-order, atomicity, and the theory of strongly rational permutation classes introduced here for the first time

    Inflations of Geometric Grid Classes: Three Case Studies

    Full text link
    We enumerate three specific permutation classes defined by two forbidden patterns of length four. The techniques involve inflations of geometric grid classes

    The enumeration of permutations avoiding 2143 and 4231

    Get PDF
    We enumerate the pattern class Av(2143, 4231) and completely describe its permutations. The main tools are simple permutations and monotone grid classes

    Antimatter, Lorentz Symmetry, and Gravity

    Full text link
    A brief introduction to the Standard-Model Extension (SME) approach to testing CPT and Lorentz symmetry is provided. Recent proposals for tests with antimatter are summarized, including gravitational and spectroscopic tests.Comment: Presented at the 12th International Conference on Low Energy Antiproton Physics, Kanazawa Japan, March 6-11, 2016, Accepted for publication in JPS Conference Proceeding

    A new camera for high-resolution infrared imaging of works of art

    Get PDF
    A new camera – SIRIS (scanning infrared imaging system) – developed at the National Gallery in London allows high-resolution images to be made in the near infrared region (900–1700 nm). The camera is based on a commercially available 320 × 256 pixel indium gallium arsenide area array sensor. This relatively small sensor is moved across the focal plane of the camera using two orthogonal translation stages to give images of c. 5000 × 5000 pixels. The main advantages of the SIRIS camera over scanning infrared devices or sequential image capture and mosaic assembly are its comparative portability and rapid image acquisition – making a 5000 × 5000 pixel image takes less than 20 minutes. The SIRIS camera can operate at a range of resolutions; from around 2.5 pixels per millimetre over an area of up to 2 × 2 m to 10 pixels per millimetre when examining an area measuring 0.5 × 0.5 m. The development of the mechanical, optical and electronic components of the camera, including the design of a new lens, is described. The software used to control image capture and to assemble the individual frames into a seamless mosaic image is mentioned. The camera was designed primarily to examine underdrawings in paintings; preliminary results from test targets and paintings imaged in situ are presented and the quality of the images compared with those from other cameras currently used for this application
    corecore