163 research outputs found

    Zur Bedeutung der Granulozyten für das Mehrorganversagen in der postoperativen Sepsis

    Get PDF

    Crystal structure of solid Oxygen at high pressure and low temperature

    Full text link
    Results of X-ray diffraction experiments on solid oxygen at low temperature and at pressures up to 10 GPa are presented.A careful sample preparation and annealing around 240 K allowed to obtain very good diffraction patterns in the orthorhombic delta-phase. This phase is stable at low temperature, in contrast to some recent data [Y. Akahama et al., Phys. Rev. B64, 054105 (2001)], and transforms with decreasing pressure into a monoclinic phase, which is identified as the low pressure alpha-phase. The discontinuous change of the lattice parameters, and the observed metastability of the alpha-phase increasing pressure suggest that the transition is of the first order.Comment: 4 pages with three figure

    Synthesis of Functionalized 1,4-Azaborinines by the Cyclization of Di-tert-butyliminoborane and Alkynes

    Get PDF
    Di-tert-butyliminoborane is found to be a very useful synthon for the synthesis of a variety of functionalized 1,4-azaborinines by the Rh-mediated cyclization of iminoboranes with alkynes. The reactions proceed via [2 + 2] cycloaddition of iminoboranes and alkynes in the presence of [RhCl(PiPr3)2]2, which gives a rhodium η4-1,2-azaborete complex that yields 1,4-azaborinines upon reaction with acetylene. This reaction is compatible with substrates containing more than one alkynyl unit, cleanly affording compounds containing multiple 1,4-azaborinines. The substitution of terminal alkynes for acetylene also led to 1,4-azaborinines, enabling ring substitution at a predetermined location. We report the first general synthesis of this new methodology, which provides highly regioselective access to valuable 1,4-azaborinines in moderate yields. A mechanistic rationale for this reaction is supported by DFT calculations, which show the observed regioselectivity to arise from steric effects in the B-C bond coupling en route to the rhodium η4-1,2-azaborete complex and the selective oxidative cleavage of the B-N bond of the 1,2-azaborete ligand in its subsequent reaction with acetylene.</p

    The active metabolite of leflunomide, A77 1726, interferes with dendritic cell function

    Get PDF
    Leflunomide, a potent disease-modifying antirheumatic drug used in the treatment of rheumatoid arthritis (RA), exhibits anti-inflammatory, antiproliferative and immunosuppressive effects. Although most of the beneficial effects of leflunomide have been attributed to its antimetabolite activity, mainly in T cells, other targets accounting for its potency might still exist. Because of mounting evidence for a prominent role of dendritic cells (DCs) in the initiation and maintenance of the immune response in RA, we analyzed the effect of the active metabolite of leflunomide (A77 1726; LEF-M) on phenotype and function of human myleloid DCs at several stages in their life cycle. Importantly, DCs differentiated in the presence of LEF-M exhibited an altered phenotype, with largely reduced surface expression of the critical co-stimulatory molecules CD40 and CD80. Furthermore, treatment of DCs during the differentiation or maturation phase with LEF-M aborted successful DC maturation. Exogenous addition of uridine revealed that DC modulation by LEF-M was independent of its proposed ability as an antimetabolite. In addition, the ability of DCs to initiate T-cell proliferation and to produce the proinflammatory cytokines IL-12 and tumour necrosis factor-α was markedly impaired by LEF-M treatment. As a molecular mechanism, transactivation of nuclear factor-κB, an transcription factor essential for proper DC function, was completely suppressed in DCs treated with LEF-M. These data indicate that interference with several aspects of DC function could significantly contribute to the beneficial effects of leflunomide in inflammatory diseases, including RA

    Biological CO2-methanation: An approach to standardization

    Get PDF
    Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are diffcult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes

    CMV Late Phase-Induced mTOR Activation Is Essential for Efficient Virus Replication in Polarized Human Macrophages : Antiviral Effects of mTOR Inhibitors

    Get PDF
    Human cytomegalovirus (CMV) remains one of the most important pathogens following solid-organ transplantation. Mounting evidence indicates that mammalian target of rapamycin (mTOR) inhibitors may decrease the incidence of CMV infection in solid- organ recipients. Here we aimed at elucidating the molecular mechanisms of this effect by employing a human CMV (HCMV) infection model in human macrophages, since myeloid cells are the principal in vivo targets of HCMV. We demonstrate a highly di- vergent host cell permissiveness for HCMV with opti- mal infection susceptibility in M2 but not M1 polarized macrophages. Employing an ultrahigh purified HCMV stock we observed rapamycin-independent viral entry and induction of IFN-b transcripts, but no proinflam- matory cytokines or mitogen-activated protein kinases and mTOR activation early after infection. However, in the late infection phase, sustained mTOR activa- tion was observed in HCMV-infected cells and was required for efficient viral protein synthesis including the viral late phase proteins pUL-44 and pp65. Accord- ingly, rapamycin strongly suppressed CMV replication 3 and 5 days postinfection in macrophages. In conclu- sion, these data indicate that mTOR is essential for virus replication during late phases of the viral cycle in myeloid cells and might explain the potent anti-CMV effects of mTOR inhibitors after organ transplantatio

    A randomized, placebo-controlled, double-blind, prospective trial to evaluate the effect of vildagliptin in new-onset diabetes mellitus after kidney transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New-onset diabetes mellitus after transplantation (NODAT), a frequent and serious complication after transplantation, is associated with decreased graft and patient survival. Currently, it is diagnosed and treated primarily according to existing guidelines for type II diabetes. To date, only a few trials have studied antidiabetic drugs in patients with NODAT. Vildagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor that improves pancreatic islet function by enhancing both α- and β-cell responsiveness to increased blood glucose. Experimental data show potential protective effects of DPP-4 inhibitors on islet function after exogenous stress stimuli including immunosuppressants. Therefore, the therapy of NODAT with this class of compounds seems attractive. At present, vildagliptin is used to treat type II diabetes as monotherapy or in combination with other antidiabetic drugs, since that it efficiently decreases glycated hemoglobin (HbA1c) values. Additionally, vildagliptin has been shown to be safe in patients with moderately impaired kidney function. This study will evaluate the safety and efficacy of vildagliptin monotherapy in renal transplant recipients with recently diagnosed NODAT.</p> <p>Methods/Design</p> <p>This study is a randomized, placebo-controlled, double-blind, prospective phase II trial. Using the results of routinely performed oral glucose tolerance tests (OGTT) in stable renal transplant patients at our center, we will recruit patients without a history of diabetes and a 2 h glucose value surpassing 200 mg/dl (11.1 mmol/l). They are randomized to receive either 50 mg vildagliptin or placebo once daily. A total of 32 patients with newly diagnosed NODAT will be included. The primary endpoint is the difference in the 2 h glucose value between baseline and the repeated OGTT performed 3 months after treatment start, compared between the vildagliptin- and the placebo-group. Secondary endpoints include changes in HbA1c and fasting plasma glucose (FPG). The safety of vildagliptin in renal transplant patients will be assessed by the number of symptomatic hypoglycemic episodes (glucose <72 mg/dl or 4 mmol/l), the number of adverse events, and possible medication-associated side-effects.</p> <p>Discussion</p> <p>NODAT is a severe complication after kidney transplantation. Few trials have assessed the safety and efficacy of antidiabetic drugs for these patients. The purpose of this study is to assess the safety and efficacy of vildagliptin in renal transplant patients with NODAT.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00980356</p
    • …
    corecore