54 research outputs found

    Field oriented control dataset of a 3-phase permanent magnet synchronous motor

    Get PDF
    This paper presents a dataset of a 3-phase Permanent Magnet Synchronous Motor (PMSM) controlled by a Field Oriented Control (FOC) scheme. The data set was generated from a simulated FOC motor control environment developed in Simulink; the model is available in the public GitHub repository1. The dataset includes the motor response to various input signal shapes that are fed to the control scheme to verify the control capabilities when the motor is subjected to real life scenarios and corner conditions. Motor control is one of the most widespread fields in control engineering as it is widely used in machine tools and robots, the FOC scheme is one of the most used control approaches thanks to its performance in speed and torque control, with the drawback of having to handcraft the Proportional-Integrative-Derivative (PID) regulators using Look Up Tables (LUT). The test conditions are designed by setting a motor desired speed. Different input speed variations shapes are proposed as well as extreme scenarios where the linear behaviour of the PID regulator is challenged by applying fast and high magnitude speed variations so that the PID controller is not able to correctly follow the reference. The measured data includes both the outer and inner-loop signals of the FOC, which opens the possibility to develop non-linear control approaches such as Machine Learning (ML) and Neural Networks (NN) with different topologies to replace the linear controllers in the FOC scheme

    A virtual sensor for electric vehicles’ state of charge estimation

    Get PDF
    The estimation of the state of charge is a critical function in the operation of electric vehicles. The battery management system must provide accurate information about the battery state, even in the presence of failures in the vehicle sensors. This article presents a new methodology for the state of charge estimation (SOC) in electric vehicles without the use of a battery current sensor, relying on a virtual sensor, based on other available vehicle measurements, such as speed, battery voltage and acceleration pedal position. The estimator was derived from experimental data, employing support vector regression (SVR), principal component analysis (PCA) and a dual polarization (DP) battery model (BM). It is shown that the obtained model is able to predict the state of charge of the battery with acceptable precision in the case of a failure of the current sensor

    Vision-enhanced Peg-in-Hole for automotive body parts using semantic image segmentation and object detection

    Get PDF
    Artificial Intelligence (AI) is an enabling technology in the context of Industry 4.0. In particular, the automotive sector is among those who can benefit most of the use of AI in conjunction with advanced vision techniques. The scope of this work is to integrate deep learning algorithms in an industrial scenario involving a robotic Peg-in-Hole task. More in detail, we focus on a scenario where a human operator manually positions a carbon fiber automotive part in the workspace of a 7 Degrees of Freedom (DOF) manipulator. To cope with the uncertainty on the relative position between the robot and the workpiece, we adopt a three stage strategy. The first stage concerns the Three-Dimensional (3D) reconstruction of the workpiece using a registration algorithm based on the Iterative Closest Point (ICP) paradigm. Such a procedure is integrated with a semantic image segmentation neural network, which is in charge of removing the background of the scene to improve the registration. The adoption of such network allows to reduce the registration time of about 28.8%. In the second stage, the reconstructed surface is compared with a Computer Aided Design (CAD) model of the workpiece to locate the holes and their axes. In this stage, the adoption of a Convolutional Neural Network (CNN) allows to improve the holes’ position estimation of about 57.3%. The third stage concerns the insertion of the peg by implementing a search phase to handle the remaining estimation errors. Also in this case, the use of the CNN reduces the search phase duration of about 71.3%. Quantitative experiments, including a comparison with a previous approach without both the segmentation network and the CNN, have been conducted in a realistic scenario. The results show the effectiveness of the proposed approach and how the integration of AI techniques improves the success rate from 84.5% to 99.0%

    Oxidative stress biomarkers in Fabry disease: is there a room for them?

    Get PDF
    Background: Fabry disease (FD) is an X-linked lysosomal storage disorder, caused by deficient activity of the alpha-galactosidase A enzyme leading to progressive and multisystemic accumulation of globotriaosylceramide. Recent data point toward oxidative stress signalling which could play an important role in both pathophysiology and disease progression. Methods: We have examined oxidative stress biomarkers [Advanced Oxidation Protein Products (AOPP), Ferric Reducing Antioxidant Power (FRAP), thiolic groups] in blood samples from 60 patients and 77 healthy controls. Results: AOPP levels were higher in patients than in controls (p < 0.00001) and patients presented decreased levels of antioxidant defences (FRAP and thiols) with respect to controls (p < 0.00001). In a small group of eight treatment-naĂŻve subjects with FD-related mutations, we found altered levels of oxidative stress parameters and incipient signs of organ damage despite normal lyso-Gb3 levels. Conclusions: Oxidative stress occurs in FD in both treated and naĂŻve patients, highlighting the need of further research in oxidative stress-targeted therapies. Furthermore, we found that oxidative stress biomarkers may represent early markers of disease in treatment-naĂŻve patients with a potential role in helping interpretation of FD-related mutations and time to treatment decision

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF

    Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer

    Get PDF

    Application of a risk-management framework for integration of stromal tumor-infiltrating lymphocytes in clinical trials

    Get PDF
    Stromal tumor-infiltrating lymphocytes (sTILs) are a potential predictive biomarker for immunotherapy response in metastatic triple-negative breast cancer (TNBC). To incorporate sTILs into clinical trials and diagnostics, reliable assessment is essential. In this review, we propose a new concept, namely the implementation of a risk-management framework that enables the use of sTILs as a stratification factor in clinical trials. We present the design of a biomarker risk-mitigation workflow that can be applied to any biomarker incorporation in clinical trials. We demonstrate the implementation of this concept using sTILs as an integral biomarker in a single-center phase II immunotherapy trial for metastatic TNBC (TONIC trial, NCT02499367), using this workflow to mitigate risks of suboptimal inclusion of sTILs in this specific trial. In this review, we demonstrate that a web-based scoring platform can mitigate potential risk factors when including sTILs in clinical trials, and we argue that this framework can be applied for any future biomarker-driven clinical trial setting
    • 

    corecore