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A B S T R A C T

Artificial Intelligence (AI) is an enabling technology in the context of Industry 4.0. In particular, the automotive
sector is among those who can benefit most of the use of AI in conjunction with advanced vision techniques.
The scope of this work is to integrate deep learning algorithms in an industrial scenario involving a robotic Peg-
in-Hole task. More in detail, we focus on a scenario where a human operator manually positions a carbon fiber
automotive part in the workspace of a 7 Degrees of Freedom (DOF) manipulator. To cope with the uncertainty
on the relative position between the robot and the workpiece, we adopt a three stage strategy. The first stage
concerns the Three-Dimensional (3D) reconstruction of the workpiece using a registration algorithm based on
the Iterative Closest Point (ICP) paradigm. Such a procedure is integrated with a semantic image segmentation
neural network, which is in charge of removing the background of the scene to improve the registration. The
adoption of such network allows to reduce the registration time of about 28.8%. In the second stage, the
reconstructed surface is compared with a Computer Aided Design (CAD) model of the workpiece to locate
the holes and their axes. In this stage, the adoption of a Convolutional Neural Network (CNN) allows to
improve the holes’ position estimation of about 57.3%. The third stage concerns the insertion of the peg by
implementing a search phase to handle the remaining estimation errors. Also in this case, the use of the CNN
reduces the search phase duration of about 71.3%. Quantitative experiments, including a comparison with a
previous approach without both the segmentation network and the CNN, have been conducted in a realistic
scenario. The results show the effectiveness of the proposed approach and how the integration of AI techniques
improves the success rate from 84.5% to 99.0%.
1. Introduction

Industry 4.0 concerns the integration of new technologies, including
Internet of Things (IoT), cloud computing, and Artificial Intelligence
(AI) into manufacturing facilities. Therefore, Industry 4.0 smart facto-
ries require advanced sensors, integrated software, and robotics compo-
nents that collect and analyze data to improve productivity and quality
of the products (Banan et al., 2020; Fan et al., 2020; Afan et al., 2021).
In particular, in the case of small-lot and customizable production, with
high flexibility and reconfigurability needs, robots can play a crucial
role to improve repeatability, overall quality of the operation, and
ergonomy of the process by reducing the operator fatigue. However, to
endow robotic systems with advanced capabilities of executing complex
tasks in dynamic environments, where robots and humans share the
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same workspace, suitable sensors and learning methodologies need to
be investigated.

This work is part of an industrial research project whose aim is
to introduce vision and AI solutions to solve real industrial problems.
Therefore, we focus on the design and development of an AI-based
solution for autonomous Peg-in-Hole task in the context of the su-
percar automotive industry. Supercar market naturally represents a
very small segment of the entire car production market because cars
in this segment are created using technological craftsmanship. A Peg-
in-Hole assembly task is considered, where five holes are located on
the surface of a carbon fiber workpiece, representing a portion of a
supercar’s safety cell (see Fig. 1). The pegs are steel bolts with a peg-
hole clearance below 1 mm. At the present time, the task is manually
vailable online 21 November 2023
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Fig. 1. Alfa Romeo C4 is a supercar with carbon fiber visible parts inside the car cockpit.
Fig. 2. Structure of the workcell. (a) The carbon fiber workpiece is manually positioned near the robot using a cart. (b) The robot does not know the exact position of the
workpiece.
performed by a human operator, which manipulates the safety cell and
inserts the steel bolts.

Such a problem has been recently handled by Nigro et al. (2023)
where a reconstruction of the workpiece surface is obtained through
an Iterative Closest Point (ICP) algorithm, by using a number of point
clouds provided by a low-cost, off-the-shelf depth sensor. Then, the
reconstructed surface is matched with a point cloud extracted from the
Computer Aided Design (CAD) model of the workpiece, to have a local-
ization of the holes and their axes. Due to the small peg-hole clearance,
the accuracy of the estimate is not enough for a successful peg insertion,
thus a search phase is necessary, requiring the peg’s tip to slide on the
surface following a trajectory described by Lissajous functions. Finally,
the peg insertion is performed by imposing a compliant behavior to
the robot at the peg tip level via an admittance control (Villani and
De Schutter, 2008).

This work integrates deep learning based computer vision methods
to improve the approach in Nigro et al. (2023). In detail, to make the
ICP surface reconstruction algorithm more effective and robust, a Deep
Neural Network (DNN) is adopted to filter the acquired point clouds by
deleting the points of the background.

We preferred to use a DNN-based approach because traditional
soft computing segmentation methods, including thresholding, region-
based segmentation, and edge segmentation can be very sensitive to
variations in the lighting conditions (Kaur and Kaur, 2014). Region-
based segmentation is very useful when it is possible to define similarity
rules, but the computational burden, in terms of time and memory,
is high. These disadvantages are overcame by using a segmentation
method based on deep learning, because the trained model can be
robust with respect to changes in the lighting conditions and images
with different quality. Moreover, it can handle the presence of complex
background.

In order to reduce the hole pose estimation error, a Convolutional
Neural Network (CNN) is used to detect the hole and better localize
its position in the robot base frame. The use of a deep learning-
based approach in place of hand crafted feature-based circle detection
methods is justified by the fact that the latter are prone to errors due
to illumination changes and, in general, they are sensitive to noise.

An extensive experimental campaign confirms the effectiveness of
the proposed approach and highlights the improvements with respect
2

to Nigro et al. (2023) due to the use of both the segmentation DNN and
the CNN.

The main difficulties and challenges can be summarized as follows:

• The carbon fiber is a challenging material for computer vision
techniques, since it is characterized by reflective surfaces.

• The workpiece is manually positioned by a human operator in the
robotic workcell (see Fig. 2a). This creates uncertainties, far larger
than the peg-hole clearance, on the relative pose of the workpiece
with respect to the robot (see Fig. 2b).

• Since the scope is to design a system suitable for industrial con-
texts, low-cost vision sensors have been used in the experiments.
Therefore, the acquired point clouds are not highly accurate.

The contribution of this paper is four-fold.

1. We integrate visual processing techniques, i.e., ICP, and deep
learning methods, i.e., DeepLabv3+, to cope with pose uncer-
tainties.

2. We employ an object detection module to better locate the
destination target for completing the Peg-in-Hole task.

3. The laboratory setup used for the experiments accurately re-
produces a real industrial setup where some modules of the
proposed strategy have been implemented (see Fig. 2b).

4. A modular architecture is proposed, where the single modules
are decoupled and each subsystem can be easily replaced pro-
vided that the same format of inputs and outputs is guaranteed.

The remainder of the paper is organized as follows. Section 2
presents an overview of existing methods for Peg-in-Hole tasks and
semantic image segmentation. Section 3 describes in detail our strategy.
Section 4 illustrates the segmentation method, Section 5 details the
surface reconstruction process, Section 6 presents the object detection
module, and Section 7 gives more details on the peg insertion process.
Quantitative experiments are shown in Section 8. Finally, conclusions
are drawn in Section 9.
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Table 1
Comparison table between different approaches in industrial applications.

Method Segmentation Detection Depth Search

Alonso et al. (2020) Yes No Yes N.A.
Nigro et al. (2020) No Yes Yes No
Yin et al. (2021) Yes No Yes N.A.
Nigro et al. (2023) No No Yes Yes
Yasutomi et al. (2021) No Yes No No
Our method Yes Yes Yes Yes
2. Related work

In this section, we discuss first the Peg-in-Hole related methods
and then some recent image segmentation methods. Moreover, a com-
prehensive table (Table 1) reports a comparison between the strategy
proposed in this paper and some other recent approaches discussed in
the following.

2.1. Peg-in-Hole methods

Autonomous and semi-autonomous Peg-in-Hole tasks require high
positioning accuracy and high sensing capability to detect the hole. The
common strategy to cope with the Peg-in-Hole problem includes two
steps:

1. The search, in which the hole is localized.
2. The insertion, where the peg is aligned to the hole’s axis and

inserted.

Two main approaches to the search phase can be pursued, based on
he exploration of the hole neighborhood or on visual feedback.
Exploration of the hole neighborhood. The methods in this cat-

gory are based on moving the peg along an assigned path to cover
he hole neighborhood. To use such a technique, force–torque sensors
re needed. For example, in Kim et al. (2012), the outline of the
ole is detected via a shape recognition algorithm based on force–
orque sensor data collected during the contact with the object surface.
ince the presence of force–torque sensors increases the overall cost
nd complexity of the system, other approaches exploit joint position
ensors for estimating the contact forces, e.g., Park et al. (2013, 2017).
ifferent search trajectories have been proposed, such as concentric
ircles, spiral paths (Jiang et al., 2022; Kang et al., 2022) and Lissajous
urves (Nottensteiner et al., 2020). However, the search methods based
n the exploration of the hole neighborhood are often time-consuming
nd require an accurate initial estimate of the hole position.
Visual feedback. To overcome the above cited limits, visual meth-

ds have been developed, as in Chang et al. (2011) that deals with a
icro-peg-in-hole task combining different computer vision techniques:
Dynamic Position-Based Servo through Image Calibration (DPBS-IC)

s used to control the gripper carrier stage, a Regional-Scanning with
dge-Fitting (RSEF) algorithm is utilized to track the needle tip, the
eg and mating hole to achieve the alignment, and a Shadow-Aided
ositioning (SAP) algorithm is employed for the final operation of
icro-peg-in-hole assembly.
Hybrid solutions. Recently, computer vision methods are com-

ined with both exploration and learning methods. In Triyonoputro
t al. (2019) a neural network maps the distance from the peg center
o the hole in the image coordinate system. In Lee et al. (2019) a deep
earning method based on self supervised multi-modal representation
f sensory output is proposed, while in De Magistris et al. (2018) a
ulti-layer perceptron network is trained on a data set including object
osition and interaction forces for a polyhedral pegs in contact with
he holes. In Yasutomi et al. (2021) a deep neural network, trained
ia reinforcement learning, is used to localize holes with variable
hape and surface finish in concrete wall. A combination of a learning
pproach for object localization and a Three-Dimensional (3D) surface
3

econstruction is proposed in Nigro et al. (2020) to accurately localize
the holes on a workpiece, characterized by a non-flat steel surface: a
CNN is in charge of detecting the holes while the 3D surface reconstruc-
tion is obtained with 3D-Digital Image Correlation (3D-DIC) (Sutton
et al., 2009).

2.2. Image segmentation methods

Image segmentation aims at grouping sets of pixels based on prede-
fined object classes (Guo et al., 2020). Instance segmentation concerns
finding image regions that share similar features without knowing their
content, while semantic segmentation classifies pixels taking care of
understanding the region content (Gruosso et al., 2021b).

In recent years, a plethora of semantic segmentation approaches
(Mo et al., 2022; Hao et al., 2020; Ulku and Akagündüz, 2022; Ren
et al., 2023), including automatic feature extraction-based algorithms
such as DNN (Goodfellow et al., 2016), have been developed. They
are used in several different contexts, including medical image analysis
(Siłka et al., 2023; Chen et al., 2023; Alalwan et al., 2021), virtual and
augmented reality (Gruosso et al., 2021a, 2022), autonomous driving
(Feng et al., 2021), cleaning of the point cloud in industrial applications
(Yin et al., 2021; Xie et al., 2020), and robotic applications (Alonso
et al., 2020).

One of the first approaches based on DNNs for pixel-wise semantic
segmentation is SegNet (Badrinarayanan et al., 2017). It is a deep
encoder–decoder U-shaped network (Ronneberger et al., 2015) trained
end-to-end on a supervised task involving the decoder as an integral
part of the network in test time. The encoder component corresponds
to the first 13 VGG16 (Simonyan and Zisserman, 2015) network con-
volutional layers, and each of them has a corresponding decoder layer.
It follows that the decoder component also consists of 13 layers. Al-
though SegNet usually performs very well in outdoor scenes, it does
not achieve the same accuracy in indoor scenes, due to the increased
cluttering. Furthermore, when compared with other approaches, e.g.,
Noh et al. (2015) and Chen et al. (2017a), SegNet requires more
hardware resources and computational time to be trained and inferred.

Recently, semi-supervised approaches for image-to-image transla-
tion problems, in particular Generative Adversarial Networks (GAN)
based methods, are also used for semantic segmentation. The aim of
GAN-based approaches is to augment the training data reducing the
wasteful work of manual labeling. As an example, Souly et al. (2017)
propose a semi-supervised GAN-based framework in which a generator
provides extra training samples and the discriminator assigns a label of
possible classes or marks it as fake.

An important approach for semantic segmentation is DeepLab (Chen
et al., 2017a), which can tackle reduced feature resolution, objects
at multiple scales, and low localization accuracy caused by invari-
ance. In particular, reduced feature resolution is faced by removing
downsampling operation from the last few DNN max pooling layers,
thus obtaining feature maps with a high sampling rate that leads to
inserting holes among non-zero filter taps (Holschneider et al., 1990).
This convolution with the upsampling filter, called atrous convolution,
allows to the recovery of full resolution feature maps with a simple
bi-linear interpolation. In this way, it is possible to enlarge the field
of view of the filter, which is beneficial for the number of parameters
and the computational effort. To address the multiple scales objects,

DeepLab uses a scheme, called Atrous Spatial Pyramid Pooling (ASPP),
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Fig. 3. Carbon fiber workpiece and detail of the holes.
Fig. 4. Functional steps of the proposed strategy: (1) workpiece surface scanning; (2) the segmentation neural network detects the workpiece and deletes its background; (3)
surface reconstruction and alignment of the reconstructed surface with the point cloud extracted from the CAD to have the initial guess estimation of the holes’ position; (4) hole
detection via the CNN; (5) search and insertion phase.
for resampling a feature layer at multiple rates prior to convolution.
The last challenge is related to the fact that an object-centric classifier
requires invariance with respect to spatial transformation. DeepLab
addresses this problem using a fully-connected Conditional Random
Field (CRF) (Krähenbühl and Koltun, 2011).

With its third version, called DeepLabv3+ (Chen et al., 2018),
the DeepLab architecture reached the DNN state-of-the-art for seman-
tic segmentation. It achieved impressive results on many benchmark
datasets and in various research fields (Harkat et al., 2020; Wang and
Liu, 2021; Wu et al., 2021; Kong et al., 2021; Gruosso et al., 2021a,
2022) surpassing among others, the previously mentioned approaches.

3. Proposed strategy

The proposed strategy is designed for handling complex 3D work-
pieces in the presence of small production volumes. Let assume that
the workpiece is manually positioned in the robot workspace, in such
a way that position uncertainties are far larger than the task tolerance.
More in detail, a carbon fiber workpiece, i.e., a portion of a supercar’s
safety cell, has been considered. The task requires the insertion of steel
bolts in 5 holes (see Fig. 3), with a peg-hole clearance below 1 mm.

Our strategy includes five functional steps, shown in Fig. 4:

1. The robot, equipped with a depth camera in an eye-in-hand
configuration, spans the workspace to acquire, in 𝑁 different
positions, 𝑁 RGB images and, through the depth sensor, 𝑁 point
clouds of the environment.

2. The acquired images represent the input for a segmentation
neural network, which generates a binary mask that separates
the workpiece from the background. The binary mask is used
to filter out points belonging to the background in the acquired
point clouds.
4

3. The 𝑁 filtered point clouds, representing different parts of the
workpiece surface, are aligned via an ICP registration algorithm
(Chen and Medioni, 1992) to reconstruct the whole workpiece
surface. The reconstructed point cloud is aligned to a reference
point cloud, extracted from the CAD model of the workpiece, to
have an initial guess of the holes’ position on the surface and
their normal unit vectors.

4. The accuracy of the hole position estimates, in the presence of
small clearance, does not guarantee the peg insertion. Thus, the
initial guess is used only for the initial positioning of the robot.
Then, a CNN is adopted to detect the presence of the hole and
identify its actual position in the robot base frame.

5. Once the hole positions and its normal unit vectors have been
estimated through the CNN, the robot approaches the hole.
A search phase is designed, where the peg’s tip explores the
neighborhood of the hole by sliding on the surface along a
trajectory described by Lissajous functions. During the search
phase and the following insertion phase, the robot is commanded
to be compliant at the peg tip level by means of an admittance
control (Villani and De Schutter, 2008).

It is worth noticing that the proposed architecture is modular, as
can be seen in Fig. 5, and each module is independent of the others
and built to be easily replaced. For example, further improvements
in the neural network field could be exploited to replace the image
segmentation and/or the object detection modules.

A flowchart representation, highlighting the whole process, is given
in Fig. 6, while each single step is discussed in detail in the following
sections.
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Fig. 5. Modular architecture.
Fig. 6. Flowchart representation of the whole process.

4. Workpiece segmentation

We designed a DNN for the carbon fiber workpiece segmentation
(see Fig. 7) based on DeepLabv3+ architecture. DeepLabv3+ consists
of two main components. The first one is the encoder block, which
extracts semantic information and low-level features from the RGB
input image, gradually reducing the feature maps size. The second
component is the decoder block, which is used to retrieve spatial
and detailed object boundary information. The encoder includes a
backbone network, followed by an ASPP module (Chen et al., 2017a)
and a 1 × 1 convolutional layer. The ASPP module captures multi-
scale context information and consists of three atrous convolutions
(Papandreou et al., 2015), a 1 × 1 convolution, and an image pooling
layer in parallel with each other. Atrous (or dilated) convolutions
5

extend standard convolutions introducing a atrous (or dilation) rate
parameter to enlarge the field of view of the convolutional filters
without increasing the computational cost and the network parameters
(Chen et al., 2014). We set the atrous rate of the atrous convolutions in
the ASPP module to 6, 12, and 18, respectively. In light of the promising
outcomes achieved in our previous works (Gruosso et al., 2021c, 2022),
where fast computation time and accurate results were obtained for
image segmentation tasks using partial or incomplete object images,
we decided to select the Xception as backbone network with 65 layers,
proposed by Chen et al. (2018) to cater specifically to the segmentation
task.

The decoder block is built using convolutional and bilinear upsam-
pling operations. In particular, the features extracted by the backbone
network are given as input to a 1 × 1 convolution and then concate-
nated with the upsampled encoder output. Finally, a 3 × 3 convolution
and a further bilinear upsampling are applied and a binary segmen-
tation mask is obtained. Although there are alternative architectures
available for semantic segmentation (Hao et al., 2020), we selected
DeepLabv3+ with Xception-65 based on its proven effectiveness and
availability of pre-trained weights. By leveraging the Xception-65 back-
bone, our network can effectively capture both local and global contex-
tual information, leading to improved segmentation accuracy. In terms
of the impact on results, the adoption of the DeepLabv3+ architecture
provides several advantages. Firstly, it allows for precise boundary
delineation and accurate segmentation of the carbon fiber workpiece,
which is essential for our specific application. Additionally, the use of
the Xception-65 backbone enhances the network’s ability to capture
fine-grained details and handle complex image features. This ultimately
contributes to better segmentation performance and overall results.

4.1. Dataset description

To train our DNN, we collected a large and diverse semi-synthetic
dataset that combines real foreground images of the carbon fiber
workpiece in various positions with different background scenes. The
use of synthetic and semi-synthetic data has become increasingly com-
mon due to the need for large training datasets with accurate labels
(Nikolenko, 2021). Synthetic data, generated using simulation software
and computer graphics techniques, provide perfect labels quickly and
with minimal effort. However, to enhance realism, a preprocessing step
is typically required.

In our dataset creation process, reported in Algorithm 1, we first
acquired the foreground information by capturing videos using a green-
screen setup. This setup involved an opaque green drape and two lights
to minimize shadows. The videos were recorded at 60 Frames Per
Second (FPS) using a standard RGB camera. Adobe After Effects was
then used to remove the green background and extract the foreground
images. To obtain accurate ground truth (labels) binary masks, alpha
channel masks were saved for each frame and binarized using Otsu’s
global image thresholding method (Otsu, 1979).

The collection of background scenes and image compositing con-
stituted the second step in our dataset creation process. Indoor videos
were recorded at 30 FPS using RGB cameras with different resolutions.

After recording the indoor videos, we utilized an automatic proce-
dure to composite the foreground images with the background scenes.
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Fig. 7. Our network model based on the DeepLabv3+ encoder–decoder architecture (Chen et al., 2018). We chose the Xception-65 model as the backbone network, which allows
extracting low-level features that are passed to the decoder. The input is an RGB image showing the carbon fiber workpiece, while the output is the segmentation binary mask.
Fig. 8. Some input images (first row) and labels (second row) from our semi-synthetic dataset.
Algorithm 1 Create Dataset
Require: 𝑉𝑓 , 𝑉𝑏, 𝐷(𝑐,𝑏) ⊳ foreground and background videos, empty dataset
1: 𝛼 ← saveMask(𝐴𝐴𝐸(𝑉𝑓 )) ⊳ Save 𝛼 channel masks using Adobe After Effect
2: 𝑏 ← OtsuMethod(𝛼) ⊳ Otsu’s thresholding binarization
3: for 𝑠 ← 1 to minSeconds(𝑉𝑏, 𝑉𝑔) do
4: 𝐵𝑔 , 𝐹𝑔 , 𝛼𝑠, 𝑏𝑠 ← TwoFourAlpha(𝑉𝑏, 𝑉𝑓 , 𝛼, 𝑠, 𝑏) ⊳ frames, 𝛼, and 𝑏 for

second 𝑠

5: 𝐹𝑔 , 𝛼𝑠, 𝑏𝑠 ← randomTransforms(𝐹𝑔 , 𝛼𝑠, 𝑏𝑠) ⊳ Apply random transforms
6: for 𝑖 ← 1 to 8 do ⊳ Apply blending equation, bilateral filter, and resizing
7: 𝑗 ← ⌊(𝑖 + 1)∕2⌋
8: 𝑘 ← (𝑖 − 1)%2 + 1
9: 𝐶𝑖 ← 𝛼𝑠(𝑗) × 𝐹𝑔(𝑗) + (1 − 𝛼𝑠(𝑗)) × 𝐵𝑔(𝑘)

10: 𝐷.𝑎𝑑𝑑(resize(blFilter(𝐶𝑖), 360, 640), 𝑏𝑠(𝑗)) ⊳ add a composite
image and its corresponding binarized mask to the dataset

11: return dataAugmentation(𝐷) ⊳ Perform data augmentation

This procedure involved selecting four foreground images per second
and two background frames per second, with a sampling step of 15
to ensure a diverse set of frames. Each selected foreground image
was composited with all background scenes using the alpha channel
blending equation:

𝐶 = 𝛼 × 𝐹 + (1 − 𝛼) × 𝐵, (1)

where 𝐶 represents the composite image, 𝐹 is the foreground image, 𝐵
is the background, and 𝛼 is the alpha channel.

To increase the variability of the dataset and improve network
generalization, several random transformations were applied to each
foreground image before compositing. These transformations included
rotation within the range of [−30, 30] degrees, horizontal flipping, and
vertical flipping. The corresponding labels and alpha channels were
transformed accordingly. Additionally, a bilateral filter was randomly
applied to the composite images to reduce noise and enhance the
preservation of foreground object edges (Capece et al., 2019; Gruosso
et al., 2021b).

To speed up network training, all images and labels were resized
to 360 × 640 pixels, and data augmentation was used by randomly
left/right mirroring training data on the fly during training. Some
examples of training images and the corresponding labels are shown
in Fig. 8.
6

Although there are alternative options available for dataset selection
(Xia et al., 2019; Garcia-Garcia et al., 2018), we adopting this approach
based on several motivations:

1. The use of a semi-synthetic dataset allows us to combine real
and computer-generated information, resulting in a dataset that
better approximates real-world scenarios. This enables our DNN
to learn from a more diverse range of data and generalize well
to unseen real-world images.

2. By incorporating real foreground images of the carbon fiber
workpiece captured under controlled conditions, we ensure that
the dataset reflects the characteristics and variations present in
the actual objects. This helps our DNN to effectively learn and
capture the specific features relevant to the segmentation task.

3. The integration of different background images further enhances
the dataset’s diversity, ensuring that our DNN can handle various
environmental contexts and backgrounds commonly encoun-
tered in practice.

4. The utilization of a large dataset size provides ample training
samples for the DNN, enabling it to learn robust and discrim-
inative features. This contributes to better generalization and
improved segmentation performance.

The effect of using this large and varied semi-synthetic dataset on
the results is significant. By training on a dataset that closely resembles
the target domain, our DNN can better adapt to real-world images,
leading to improved segmentation accuracy. The inclusion of diverse
backgrounds also helps the model handle challenging scenarios and
enhances its ability to segment the carbon fiber workpiece accurately.

4.2. Training details

Our DNN was trained using the above described segmentation
dataset. Similar to Chen et al. (2017b) and Gruosso et al. (2022),
we used the Stochastic Gradient Descent with Momentum (SGDM)
optimization algorithm with polynomial learning rate policy, which
proved to be more effective and with faster convergence than other
learning rate update policies (Liu et al., 2015; Chen et al., 2017a).

SGDM is a widely used and effective optimization algorithm for
training deep neural networks. It combines the benefits of Stochastic
Gradient Descent (SGD) with an additional momentum term. This
momentum term helps accelerate convergence by accumulating the
past gradients and dampening the oscillations in the parameter updates.
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By incorporating momentum, SGDM allows the optimization process
to navigate the loss landscape more efficiently, potentially leading to
faster convergence and improved generalization. One of the advantages
of SGDM over alternative algorithms, such as SGD or Adam (Ruder,
2016; Kingma and Ba, 2014), is its ability to handle noisy or sparse
gradients more effectively. This is particularly beneficial when work-
ing with large-scale datasets or complex architectures, where gradient
noise and sparsity can pose challenges. SGDM’s momentum term helps
smooth out the noisy gradients and enables the optimizer to escape
shallow local minima, leading to improved convergence and better
generalization performance. SGDM’s ability to accelerate convergence
and handle noisy gradients leads to faster training and better overall
performance of our DNN.

In our approach, the value of the learning rate is modified according
to the following formula:

𝛼𝑡 = 𝛼0 ×
(

1 − 𝑡
𝑇

)𝑝
, (2)

where 𝛼𝑡 is the learning rate at the current iteration step 𝑡, 𝛼0 is the
ase learning rate set to 0.0001 for our training phase, 𝑇 is the total
umber of iterations set to 50K, and 𝑝 is the power value set to 0.9.

Although this equation is a popular choice, there exist alternative
trategies for adjusting the learning rate during training. Some feasible
lternatives include fixed learning rates, step decay, exponential decay,
nd adaptive learning rates algorithms such as Adam (Kingma and Ba,
014) or Adagrad (Duchi et al., 2011). The advantages of the adopted
quation lie in its simplicity and flexibility. By gradually decreasing
he learning rate over time, it allows for finer adjustments during
ater stages of training when approaching convergence. This can help
o avoid overshooting and enable the model to settle into a more
ptimal solution. Additionally, the parameterization of the equation
hrough the base learning rate, the current iteration, and the total
umber of iterations provide control over the decay rate. The effect
f this equation on the results can vary depending on the specific
ataset and model architecture. In general, a decaying learning rate can
nhance convergence and prevent oscillations, leading to more stable
nd accurate results. However, the specific choice of decay function
nd its hyperparameters can impact training dynamics and the final
erformance.

We set the momentum 𝛾 of the SGDM algorithm to 0.9, the batch
ize to 4, and used cross-entropy as a loss function since it is the most
sed and efficient in the case of semantic segmentation (Jadon, 2020;
ruosso et al., 2021b, 2022).

Since training a DNN from scratch requires a copious amount of
ata and resources in terms of memory, computation, and time, starting
rom a pre-trained models on a large dataset is usually recommended.
herefore, we used weights pre-trained on the ImageNet (Russakovsky
t al., 2015) and MS-COCO (Lin et al., 2014) datasets.1 ImageNet is a
uge and generic dataset employed for classifying and detecting 1000
ifferent object categories, while MS-COCO is smaller and used for
lassification, detection, and segmentation of 80 classes. For this reason,
segmentation network pre-trained on both datasets may benefit more

rom the learned features than using only a general ImageNet pre-
raining (Chen et al., 2018). The DNN training was performed on a
esktop computer equipped with an Intel Core i7-3rd generation CPU,
6 GB RAM, and an Nvidia Titan Xp GPU with 12 GB of memory.

. Surface reconstruction

To reconstruct the workpiece surface, the robot moves the cam-
ra and scans its workspace acquiring 𝑁 different point clouds. The
cquired point clouds are aligned using an ICP registration algorithm
Choi et al., 2015).

1 The pre-trained weights are publicly available on the DeepLab project
age: https://github.com/tensorflow/models/tree/master/research/deeplab.
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The basic idea of the registration algorithms is to find a set of rigid
transformations, 𝑻 𝑖, that allows to align, in a global coordinate frame
𝑔 , the 𝑁 acquired point clouds 𝑖 (𝑖 = 1,… , 𝑁). In particular, in
our case, the global coordinate frame is chosen coincident with the
reference frame in which the first point cloud 1 is acquired. To achieve
this, rigid transformations aligning each couple of consecutive point
clouds are computed.

For the 𝑖th point cloud, the transformation matrix 𝑻 𝑖
𝑖+1 that trans-

forms the generic point 𝒑𝑖+1𝑗 ∈ 𝑖+1 from its local reference frame
to 𝑖, is initialized to 𝑻 𝑖

𝑖+1(0), e.g., equal to the identity matrix, and
then iteratively refined via the ICP algorithm. In this work, the point-
to-plane ICP algorithm is adopted since it converges faster than the
point-to-point ICP algorithm (Rusinkiewicz and Levoy, 2001).

To the aim, for the point cloud 𝑖+1, 𝑚 control points are selected
with the corresponding points in 𝑖, in such a way to define the
correspondence set  = {(𝒑𝑖1,𝒑

𝑖+1
1 ),… , (𝒑𝑖𝑚,𝒑

𝑖+1
𝑚 )}. Then at the 𝑘th

iteration, the transformation matrix 𝑻 𝑖
𝑖+1(𝑘) is obtained by minimizing

the cost function 

(𝑻 𝑖
𝑖+1(𝑘)) =

∑

𝒑𝑖
𝑗 ,𝒑𝑖+1

𝑗 ∈

(

(�̃�𝑖𝑗 − 𝑻 𝑖
𝑖+1(𝑘) �̃�

𝑖+1
𝑗 ) �̃�𝑖𝑖+1

)2
, (3)

where the symbol ̃ denotes the homogeneous representation of the
coordinate vectors (Siciliano et al., 2009), and 𝒏𝑖𝑖+1 is the unit vector
normal to the surface represented by the point cloud 𝑖+1 expressed
in the reference frame of 𝑖. The dimension of the correspondence set
is usually a trade-off between the computation time and the accuracy:
the more points are selected the more the estimation of 𝑻 𝑖

𝑖+1 is accurate
and larger computation time is required.

By applying the above described algorithm to all the acquired
point clouds, a reconstruction of the surface 𝑟, i.e., a point cloud
representing the whole workpiece surface in the coordinate frame 𝑔 ,
is determined.

6. Hole detection

Once the reconstructed point cloud 𝑟 is obtained, a first estimate
of the hole positions and tilts is computed by comparing 𝑟 with a
known one, , extracted from the CAD model. Again, an ICP algorithm
is adopted to align the two point clouds: firstly a Random Sample
Consensus (RANSAC) algorithm is used to determine the corresponding
points of the two point clouds, then a procedure similar to the one
described in Section 5 is carried out.

The hole positions, 𝒑ℎ𝑖 , and their axes, i.e., the normal unit vector
to the surface, 𝒏ℎ𝑖 , are assumed known on the point cloud , thus,
thanks to the alignment procedure it is possible to estimate them in
the reconstructed point cloud 𝑟 and localize them in the coordinate
frame 𝑔 . Finally, by adopting a camera calibration process (Tsai et al.,
1989) the camera-end effector transformation is determined and the
hole positions can be expressed in the robot base coordinate frame.

Such an initial estimate is likely to be affected by errors, due
to the reconstruction and calibration processes. Therefore, before the
insertion, a CNN is exploited to detect with better accuracy the holes on
the workpiece surface. The detection is performed by using the model
built in Nigro et al. (2020) through the YOLOv3 supervised object
detection architecture (Redmon and Farhadi, 2018).

The detector was created by considering 108 images (as training
set) of size 480 × 640 of a non-flat steel surface. Some images of the
dataset are shown in Fig. 9. The details about the training and the CNN
performance can be found in Nigro et al. (2020).

As it can be seen in Fig. 9, the workpiece used to train the network
was different from the one used in this work. In particular, the one
in Fig. 9 has a white surface with stochastic black speckle pattern, in
which the holes appear as black ellipses, while the one considered for
the experiments is a dark carbon fiber workpiece, and the surface is
characterized by high reflectivity. Despite this, the detection perfor-
mance on the carbon fiber object are satisfactory. The hole detector

runs with a processing time of about 1.05 s per image on CPU.
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Fig. 9. Examples of images used for training the hole detector.
7. Search and insertion

Once the estimates of the hole positions, �̂�ℎ𝑖 , and its normal unit
vector, �̂�ℎ𝑖 , are determined more accurately with the hole detector,
three phases are executed to perform the Peg-in-Hole task:

1. Approach phase: where the robot moves the peg close to the hole
and aligns the peg axis to �̂�ℎ𝑖 .

2. Search phase: where an exploration of the neighborhood of the
estimated hole position, �̂�ℎ𝑖 , is exploited to compensate for any
estimation errors.

3. Insertion phase: where the peg is inserted in the hole.

The robot approach motion is commanded via a closed-loop inverse
kinematics algorithm with two tasks: the first one for aligning the peg
to the hole axis, and the second one for moving the peg close to the
workpiece surface.

The alignment task is aimed at aligning the 𝒛𝑒 axis of the end-effector
reference frame to the hole axis �̂�ℎ𝑖 . The Jacobian matrix relative to this
task is

𝑱 𝑎 = 2(�̂�ℎ𝑖 − 𝒛𝑒)T𝑺(𝒛𝑒)𝑱𝑂(𝒒), (4)

where 𝑺(⋅) is the skew symmetric matrix operator performing the cross
product and 𝑱𝑂(𝒒) is the orientation part of the geometric Jacobian
matrix of the robot (Siciliano et al., 2009).

The position tracking task is in charge of moving the peg tip in
the neighborhood of the hole. The task function is the position of the
peg, 𝒑𝑒, and the task Jacobian is the positional part of the geometric
Jacobian matrix of the robot, 𝑱𝑃 (𝒒).

The joint reference velocities are computed as follows (Antonelli,
2009)

�̇�𝑟 = 𝑱 †
𝑎(−𝑘((𝒛𝑒 − �̂�ℎ𝑖 )

T(𝒛𝑒 − �̂�ℎ𝑖 ))) + 𝑱 †
𝑃 (�̇�𝑒,𝑟 +𝑲(𝒑𝑒,𝑟 − 𝒑𝑒)), (5)

where (⋅)† denotes the right pseudo-inverse of a matrix, 𝒑𝑒,𝑟 (�̇�𝑒,𝑟) is
the reference position (linear velocity) of the peg, while 𝑘 ∈ R and
𝑲 ∈ R3×3 are, respectively, a positive definite scalar and matrix gain.

To compensate the estimation errors, a search phase is exploited.
It starts when a contact between the surface and the peg tip is experi-
enced. Since most of the collaborative robots are not equipped with a
wrist-mounted force–torque sensor, the contact wrench on the peg tip
can be computed by recurring to an observer based on the generalized
momentum, which exploits the measures of the joint torques (De Luca
and Mattone, 2005).

Once the contact has been detected, the peg tip is moved along an
exploring path, described by a Lissajous function

𝑥 = 𝑎𝑥𝑠𝑖𝑛(𝜔𝑥(𝑡 − 𝑡𝑐 )), (6)
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𝑦 = 𝑎𝑦𝑠𝑖𝑛(𝜔𝑦(𝑡 − 𝑡𝑐 )),
where 𝑎𝑥, 𝑎𝑦, 𝜔𝑥 and 𝜔𝑦 are the sine wave amplitudes and frequencies,
respectively, and 𝑡𝑐 is the time instant when the peg tip comes in
contact with the surface.

When the hole is detected and the peg tip is inserted of about 1 mm,
the search phase ends. During the search and insertion phases, since
there is physical interaction between the robot and workpiece, to keep
bounded the interaction wrench, the manipulator has been commanded
to be compliant by implementing an admittance control scheme (Nigro
et al., 2023).

8. Experimental results

The experimental setup for validating the proposed strategy consists
of a collaborative robot Franka Emika Panda and an Intel Realsense
D435 RGB-D camera. The camera has been preliminarily calibrated by
using 16 images of a 2D checkerboard flat pattern via the Tsai method
implemented in the VISP library (Marchand et al., 2005). The vision
system runs on a workstation equipped with the Ubuntu 18.04 LTS
operating system, with a real-time kernel, running on an Intel Xeon
3.7 GHz CPU with 32 GB RAM; the librealsense2 library is used
for acquiring the camera data. The Open3D library (Zhou et al., 2018)
is used both for the point cloud registration and for the overlapping of
the reconstructed surface with the point cloud extracted by the CAD
model. In the first case the multiway registration algorithm
is exploited, while in the second one the global registration
algorithm is used. Table 2 summarizes the main hardware and software
components adopted for the experiments.

To have statistically significant results, 51 insertion tests have
been carried out by randomly positioning the workpiece in the robot
workspace. The effect of the segmentation network and the CNN have
been evaluated by considering an ablation test. In particular, for each
insertion, we carried out two experiments. In the first one, the surface
reconstruction is performed, according to the method proposed in Nigro
et al. (2023), without using the DeepLabv3+ network, i.e., the ICP
algorithm is fed by the point cloud directly acquired by the camera.
Moreover, in these experiments the hole localization does not exploit
the CNN while it is performed only by comparing the reconstructed
surface with the CAD model. In the second set of experiments, the full
strategy described in Sections 3–7 is pursued.

In each test, the robot initially scans the workpiece moving along a
planned path, designed to include the nominal position of the work-
piece in the camera field of view with a certain tolerance to take
into account the positioning errors. 𝑁 = 8 different point clouds are
acquired via the depth sensor to reconstruct the workpiece surface. The
value of 𝑁 is chosen to have a wide overlap between two consecutive
point clouds. To test the robustness of the proposed methods, a set of
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Table 2
Hardware and development tools.

Robot Franka Emika Panda
Camera Intel Realsense D435
Robot workstation CPU Intel Xeon 3.7 GHz CPU with 32 GB RAM
Robot workstation operating system Ubuntu 18.04 LTS real-time
DNN workstation CPU Intel Core i7-3rd generation CPU with 16 GB RAM
DNN workstation GPU Nvidia Titan Xp GPU with 12 GB memory
Robot library libfranka 0.7.1 C++
Camera library librealsense2 2.37.0 C++
Registration library Open3D 0.12.0 Python
Python version 3.6.9
Fig. 10. Workpiece surface reconstruction without (a) and with (b) the application of the segmentation network.
Fig. 11. Registration time by using the multiway algorithm without (left) and with
(right) the application of the segmentation network.

experiments has been intentionally carried out with a high initial posi-
tioning error. The Vicon tracking system2 has been used to accurately
measure the workpiece position.

Regarding the registration, both the tested strategies allow to obtain
the surface reconstruction in all tests. However, as can be noted in
Fig. 10, the use of DeepLabv3+ allows to remove the background from
the acquired point clouds and to have a better reconstruction of the
surface. Moreover, the use of the network reduces the time required
by the multiway registration algorithm of about 28.8%, as shown in
Fig. 11.

When the norm of the initial positioning error is greater than 8
cm, the overlapping with the CAD model fails in the absence of the
segmentation network. This is mainly due to the presence of high
number of points belonging to the background in the point cloud.
On the contrary, when DeepLabv3+ is adopted, the overlapping has
been successfully executed in all the tests, also when the norm of the
positioning error is 26 cm. Larger errors have not been tested due to
the setup geometry. Fig. 12 shows a case in which the workpiece is
positioned at the border of the camera field of view: the surface is

2 https://www.vicon.com/.
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Table 3
Search and insertion parameters.

Parameter 𝑲 𝑘 𝑎𝑥 𝑎𝑦 𝜔𝑥 𝜔𝑦

Value 150 ⋅ 𝑰3 5 0.0175 0.0245 2.5 3.5

correctly reconstructed even if not completely, while the overlap with
the CAD is successful only when DeepLabv3+ is adopted.

Tests with large orientation errors have been conducted, but do not
show significant discrepancies between the two methods.

To test the network generalization capabilities, experiments involv-
ing different carbon fiber workpieces have been conducted. Despite the
surface of the used workpieces is highly reflective and they have not
been included in the training dataset, the segmentation mask correctly
matches the object, as shown in Fig. 13.

Regarding the performance of the task execution, two indices have
been considered: (1) the error between the estimated and actual hole’s
position and (2) the duration of the search phase before the insertion.
Fig. 14 shows the estimation obtained by simply comparing the recon-
structed surface with the point cloud extracted by the CAD model and
that obtained by using the CNN approach.

The adoption of the CNN allows to strongly reduce the error as
demonstrated by the results shown in Fig. 15, where the mean errors
for the 51 tests are compared with and without the CNN. The error
is computed as the distance between the estimated position and the
actual one computed on the hole’s plane. The adoption of the CNN for
estimating the hole position allows to halve the mean error on the five
holes (from 5.3 mm to 2.3 mm).

Once the hole position has been estimated, a search phase, in
which the peg explores the neighborhood of the estimated position
by following a path on the surface planned via Lissajous functions, is
necessary since the clearance between the hole and peg is very small
(below 1 mm).

The Lissajous magnitude and frequency parameters have been set
to reach a trade-off between the coverage surface and the amplitude of
the search area. Regarding the control parameters, they have been set
in such a way to make the robot rigid along the peg axis and compliant
along the other directions. The parameters adopted during the tests are
reported in Table 3.

The duration of the search phase is strictly related to the estimation
error, thus it is not surprising that the adoption of the CNN allows to
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Fig. 12. Test on surface overlap with (bottom) and without (top) DeepLabv3+.
Fig. 13. Reflective carbon fiber workpiece used to test the segmentation network:
despite the high reflectivity, the segmentation mask correctly matches the object.

Fig. 14. Hole’s position estimation without (a) and with (b) the use of the CNN. On
the right, the green square is the bounding box of the CNN and the green cross is its
center. The red cross represents the initial guess estimation.

reduce the search time of about 71.3%. In Fig. 16 the mean duration
of the search time is shown in both cases.

Finally, Fig. 17 reports the success rate computed on the 51 tests.
More in detail, it can be viewed that, the segmentation network as well
as the adoption of the CNN, allows to obtain a success rate of 99.0%,
i.e., only in one attempt of 103 the insertion failed. In the absence of the
neural networks, i.e., by using only registration methods, the success
rate decreases to 84.5%.

9. Conclusions

In this paper, we have presented a method for accomplishing a Peg-
in-Hole task on a carbon fiber workpiece using a robot manipulator in a
10
Fig. 15. Mean hole’s estimation error without (left) and with (right) the use of the
CNN.

Fig. 16. Search phase duration without (left) and with (right) the use of the CNN.

real-world industrial scenario. The workpiece is mounted on a cart and
manually positioned near the robot by a human operator, thus creating
uncertainty on its relative position with respect to the robot.

To accomplish the task, a three step process is proposed. The
first step exploits a 3D reconstruction of the workpiece via an ICP
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),
Fig. 17. Success rate both in the absence (left) and in the presence (right) of the neural
networks.

registration algorithm. More in detail, a semantic image segmentation
neural network has been adopted to remove the background of the
scene leading to an improvement of the computational time for the
registration. The second step includes the estimation of the hole po-
sition on the workpiece surface. The main contribution, in this stage,
is the adoption of a CNN to reduce the estimation errors. In fact, hand
crafted feature-based circle detection methods are prone to illumination
changes and, in general, sensitive to noise. The proposed CNN-based
approach demonstrated in our experiments to be robust to variation
in the light conditions of the operational environment. Finally, in the
third step, the peg is inserted through a fine search process in which the
peg tip slides on the surface. We have experimented our approach in
two different setting: our laboratory and a real-world factory, obtaining
similar good detection results.

Despite the used techniques are not novel, integration of advanced
vision methods and AI applications in an industrial context is an
extremely relevant pillar on which is based the Industry 4.0 paradigm.
The presented approach has been validated in our laboratory, but the
setup accurately reproduces a real industrial setup. Quantitative experi-
mental results, including an ablation test, demonstrate the effectiveness
of the proposed approach and how the integration of AI techniques
improves the success rate.

As a future work, we intend to extend our approach to manipulator
mounted on a mobile base. Moreover, an additional module could be
inserted in the proposed architecture to evaluate the quality level of
the workpiece at hand by detecting possible manufacturing errors.

10. Available materials

We have shared our trained model and source code through the
following link http://graphics.unibas.it:8080/share.cgi?ssid=0wSaJkQ.
Furthermore, we shared the training and test dataset through this link
http://graphics.unibas.it:8080/share.cgi?ssid=0G9ea07. A video demo
of our work is available at https://youtu.be/AXJlpBvFuoU.
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Appendix A. Abbreviations

The following abbreviations are used in this manuscript:

3D Three-Dimensional
3D-DIC 3D-Digital Image Correlation
AI Artificial Intelligence
ASPP Atrous Spatial Pyramid Pooling
CAD Computer Aided Design
CNN Convolutional Neural Network
CPU Central Processing Unit
CRF Conditional Random Field
DNN Deep Neural Network
DOF Degrees of Freedom
DPBS-IC Dynamic Position-Based Servo through Image

Calibration
FPS Frames Per Second
GAN Generative Adversarial Networks
GPU Graphics Processing Unit
ICP Iterative Closest Point
IoT Internet of Things
RAM Random Access Memory
RANSAC Random Sample Consensus
RGB Red, Green, and Blue
RSEF Regional-Scanning with Edge-Fitting
SAP Shadow-Aided Positioning
SGD Stochastic Gradient Descent
SGDM Stochastic Gradient Descent with Momentum

Appendix B. List of symbols

The following symbols are used in this manuscript:

𝐶 Composite image
𝛼 Alpha channel
𝐹 Foreground image
𝐵 Background image
𝛼𝑡 Learning rate at iteration step 𝑡
𝛼0 Base learning rate
𝑇 Total number of iterations in training process
𝛾 Momentum of the SGDM algorithm
𝑔 Global reference frame
𝑁 Number of acquired point clouds
𝑖 𝑖th acquired point cloud
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𝑻 𝑖
𝑖+1 Rigid transformation between the reference frame of

𝑖+1 and the reference frame of 𝑖
𝒑𝑖𝑗 𝑗th generic point expressed in the reference frame of 𝑖
 Set of correspondence points
 Cost function for ICP algorithm
𝒏𝑖𝑖+1 Unit vector normal to the surface represented by the

point cloud 𝑖+1 expressed in the reference frame of 𝑖
𝑟 Workpiece reconstructed point cloud
 Workpiece known point cloud
𝒑ℎ𝑖 Position of the 𝑖th hole
𝒏ℎ𝑖 Normal unit vector of the 𝑖th hole
�̂�ℎ𝑖 Estimates position of the 𝑖th hole
�̂�ℎ𝑖 Estimates normal unit vector of the 𝑖th hole
𝒛𝑒 𝐳 axis of the end-effector reference frame
𝒒 Vector of the joint positions
�̇�𝑟 Vector of the joint reference velocities
𝑱𝑃 (𝒒) Positional part of the geometric Jacobian matrix of the

robot
𝑱𝑂(𝒒) Orientation part of the geometric Jacobian matrix of

the robot
𝑱 𝑎 Jacobian matrix relative to the alignment task
(⋅)† Right pseudo-inverse of a matrix
𝑺(⋅) Skew symmetric matrix operator
𝒑𝑒 Position of the peg
𝒑𝑒,𝑟 Reference position of the peg
�̇�𝑒,𝑟 Reference linear velocity of the peg
𝑘 Positive definite scalar gain
𝑲 Positive definite matrix gain
𝑥, 𝑦 Value of the Lissajous function for the 𝐱 and 𝐲 axes
𝑎𝑥, 𝑎𝑦 Sine wave amplitudes of the Lissajous function
𝜔𝑥, 𝜔𝑦 Sine wave frequencies of the Lissajous function
𝑡𝑐 Time instant when the contact with the surface starts
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