227 research outputs found

    Electron Depletion Due to Bias of a T-Shaped Field-Effect Transistor

    Full text link
    A T-shaped field-effect transistor, made out of a pair of two-dimensional electron gases, is modeled and studied. A simple numerical model is developed to study the electron distribution vs. applied gate voltage for different gate lengths. The model is then improved to account for depletion and the width of the two-dimensional electron gases. The results are then compared to the experimental ones and to some approximate analytical calculations and are found to be in good agreement with them.Comment: 16 pages, LaTex (RevTex), 8 fig

    Interactions Between Kidney Function and Cerebrovascular Disease: Vessel Pathology That Fires Together Wires Together

    Get PDF
    The kidney and the brain, as high-flow end organs relying on autoregulatory mechanisms, have unique anatomic and physiological hemodynamic properties. Similarly, the two organs share a common pattern of microvascular dysfunction as a result of aging and exposure to vascular risk factors (e.g., hypertension, diabetes and smoking) and therefore progress in parallel into a systemic condition known as small vessel disease (SVD). Many epidemiological studies have shown that even mild renal dysfunction is robustly associated with acute and chronic forms of cerebrovascular disease. Beyond ischemic SVD, kidney impairment increases the risk of acute cerebrovascular events related to different underlying pathologies, notably large artery stroke and intracerebral hemorrhage. Other chronic cerebral manifestations of SVD are variably associated with kidney disease. Observational data have suggested the hypothesis that kidney function influences cerebrovascular disease independently and adjunctively to the effect of known vascular risk factors, which affect both renal and cerebral microvasculature. In addition to confirming this independent association, recent large-scale human genetic studies have contributed to disentangling potentially causal associations from shared genetic predisposition and resolving the uncertainty around the direction of causality between kidney and cerebrovascular disease. Accelerated atherosclerosis, impaired cerebral autoregulation, remodeling of the cerebral vasculature, chronic inflammation and endothelial dysfunction can be proposed to explain the additive mechanisms through which renal dysfunction leads to cerebral SVD and other cerebrovascular events. Genetic epidemiology also can help identify new pathological pathways which wire kidney dysfunction and cerebral vascular pathology together. The need for identifying additional pathological mechanisms underlying kidney and cerebrovascular disease is attested to by the limited effect of current therapeutic options in preventing cerebrovascular disease in patients with kidney impairment

    Sol-gel immobilization of glutathione transferase: efficient tool for bioremediation

    Get PDF
    Glutathione transferases are multi-functional enzymes with an important role in xenobiotic detoxification. They catalyse the nucleophilic addition of the sulfur atom of glutathione (γ-L-Glu-L-Cys-Gly, GSH) to the electrophilic groups of a large variety of hydrophobic molecules including organic halides, epoxides, arene oxides, α- and β-unsaturated carbonyls, organic nitrate esters, and organic thiocyanates. The conjugation of GSH to such molecules increases their solubility and reduces their toxicity. GSTs represent a versatile tool with a variety of biotechnological applications, in the field of bioremediation to clean up environmentally contaminated sites. The purpose of this project was the study of GST immobilization for the biodegradation of toxic compounds

    Sensitivity analysis of cost parameters for floating offshore wind farms: An application to Italian waters

    Get PDF
    Floating offshore wind farms represent the next frontier in wind power industry. However, the development of this technology is strongly dependent on its economic feasibility. There follows that the development of economic analyses is crucial to highlight the possible greater potential of floating offshore wind farms and to support their sustainability and technical value. In this context, the purpose of this paper is to present a sensitivity analysis of the main cost parameters for floating offshore wind farms, namely the distance from the coast, the distance from the closest port and the sea depth. It can give specific information on which parameters are more important, and how much they affect the total cost. To this aim, a comprehensive life cycle cost assessment of floating offshore wind farms has been developed. In this study the cost model has been applied to the Italian waters. The results shown should provide guidance on how to preliminary assess the quality of a given site for floating offshore wind farm installation, and should be helpful for future development of decision-making procedures in the offshore wind sector

    Compression of volume-surface integral equation matrices via Tucker decomposition for magnetic resonance applications

    Full text link
    In this work, we propose a method for the compression of the coupling matrix in volume\hyp surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix\hyp vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix\hyp vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with 11 mm3^3 voxel resolution, could be performed in ∼33\sim 33 seconds in a GPU, after compressing the associated coupling matrix from ∼80\sim 80 TB to ∼43\sim 43 MB.Comment: 13 pages, 11 figure

    Genetically determined blood pressure, antihypertensive drug classes and risk of stroke subtypes

    Get PDF
    Objective: We employed Mendelian Randomization to explore whether the effects of blood pressure (BP) and BP lowering through different antihypertensive drug classes on stroke risk vary by stroke etiology. Methods: We selected genetic variants associated with systolic and diastolic BP and BP-lowering variants in genes encoding antihypertensive drug targets from a GWAS on 757,601 individuals. Applying two-sample Mendelian randomization, we examined associations with any stroke (67,162 cases; 454,450 controls), ischemic stroke and its subtypes (large artery, cardioembolic, small vessel stroke), intracerebral hemorrhage (ICH, deep and lobar), and the related small vessel disease phenotype of WMH. Results: Genetic predisposition to higher systolic and diastolic BP was associated with higher risk of any stroke, ischemic stroke, and ICH. We found associations between genetically determined BP and all ischemic stroke subtypes with a higher risk of large artery and small vessel stroke compared to cardioembolic stroke, as well as associations with deep, but not lobar ICH. Genetic proxies for calcium channel blockers, but not beta blockers, were associated with lower risk of any stroke and ischemic stroke. Proxies for CCBs showed particularly strong associations with small vessel stroke and the related radiological phenotype of WMH. Conclusions: This study supports a causal role of hypertension in all major stroke subtypes except lobar ICH. We find differences in the effects of BP and BP lowering through antihypertensive drug classes between stroke subtypes and identify calcium channel blockade as a promising strategy for preventing manifestations of cerebral small vessel disease

    'It's the other assessment that is the key': three Norwegian physical education teachers' engagement (or not) with assessment for learning

    Get PDF
    peer-reviewedThe international agenda for assessment continues to convey a growing interest in assessment for learning (AfL) as a tool to support learning and enhance teaching. Complementing this, the recent literature on assessment in physical education acknowledges the need for physical educators to integrate AfL into their teaching and assessment practice as an important part of the future development of the subject. Appreciating that physical education must be recognized as part of the larger movement culture in society and is a place to learn about movement culture, this study explores how AfL is understood and enacted by physical education teachers and the extent to which such enactment complements or challenges learning movement cultures within physical education. This study shares how three Norwegian physical education teachers used AfL to term what they were practicing with respect to assessment in physical education. We follow the interactions of the selected teachers throughout focus groups, using the empirical data as our 'dialogue partner' in reconstructing and discussing their assessment stories. We conclude that the need of embedding AfL in learning theory may well be one of the strongest challenges to enacting AfL in physical education. We acknowledge that not only are most existing theories of learning defined cognitively, but also that learning connected to physical education and activity is, to a large extent, practical and embodied, and also linked to the powerful discourses of sport and related areas such as health.PUBLISHEDpeer-reviewe

    Genetically Predicted Blood Pressure Across the Lifespan: Differential Effects of Mean and Pulse Pressure on Stroke Risk.

    Get PDF
    Hypertension is the leading risk factor for stroke. Yet, it remains unknown whether blood pressure pulsatility (pulse pressure [PP]) causally affects stroke risk independently of the steady pressure component (mean arterial pressure [MAP]). It is further unknown how the effects of MAP and PP on stroke risk vary with age and stroke cause. Using data from UK Biobank (N=408 228; 38-71 years), we selected genetic variants as instruments for MAP and PP at age ≤55 and >55 years and across age deciles. We applied multivariable Mendelian randomization analyses to explore associations with ischemic stroke, intracerebral hemorrhage, and their subtypes. Higher genetically predicted MAP was associated with higher risk of ischemic stroke and intracerebral hemorrhage across the examined age spectrum. Independent of MAP, higher genetically predicted PP only at age >55 years was further associated with higher risk of ischemic stroke (odds ratio per-SD-increment, 1.23 [95% CI, 1.13-1.34]). Among subtypes, the effect of genetically predicted MAP on large artery stroke was attenuated, whereas the effect of genetically predicted PP was augmented with increasing age. Genetically predicted MAP, but not PP, was associated with small vessel stroke and deep intracerebral hemorrhage homogeneously across age deciles. Neither genetically predicted MAP nor PP were associated with lobar intracerebral hemorrhage. Beyond an effect of high MAP at any age on ischemic and hemorrhagic stroke, our results support an independent causal effect of high PP at older ages on large artery stroke. This finding warrants further investigation for the development of stroke preventive strategies targeting pulsatility in later life

    Recommendations for the medical evaluation of children prior to adoption in South Africa

    Get PDF
    The current legislative framework in South Africa (SA) supports adoption as the preferred form of care for children with inadequate or no parental or family support. There are an estimated 3.8 million orphans in SA, with approximately 1.5 - 2 million children considered adoptable. As a means of improving services, newly drafted adoption guidelines from the National Department of Social Development will in future require both non-profit and private sector adoption agencies to obtain a medical report on a child prior to placement. However, no local guidelines specify what an appropriate medical examination entails or how it should be reported. For the purposes of proposing and developing such guidelines, an open forum was convened at the Institute of Pathology, University of Pretoria, in March 2013. These ‘Recommendations for the medical evaluation of children prior to adoption in South Africa’ emanate from this meeting

    Genetically Predicted Midlife Blood Pressure and Coronary Artery Disease Risk: Mendelian Randomization Analysis.

    Get PDF
    Background Elevated blood pressure is a major cause of cardiovascular morbidity and mortality. However, it is not known whether midlife blood pressure affects later life cardiovascular risk independent of later life blood pressure. Methods and Results Using genetic association estimates from the UK Biobank and CARDIoGRAMplusC4D consortium, univariable mendelian randomization was performed to investigate the total effect of genetically predicted mean arterial pressure (MAP) at age ≤55 years on coronary artery disease (CAD) risk, and multivariable mendelian randomization was performed to investigate the effect of genetically predicted MAP on CAD risk after adjusting for genetically predicted MAP at age >55 years. In both univariable and multivariable mendelian randomization analyses, there was consistent evidence of higher genetically predicted MAP at age ≤55 years increasing CAD risk. This association persisted after adjusting for genetically predicted MAP at age >55 years, when considering nonoverlapping populations for the derivation of MAP and CAD risk genetic association estimates, when investigating only incident CAD events after age >55 years, and when restricting the analysis to variants with most heterogeneity in their associations with MAP ≤55 and >55 years. For a 10-mm Hg increase in genetically predicted MAP at age ≤55 years, the odds ratio of later life CAD was 1.43 (95% CI, 1.16-1.77; P=0.001) after adjusting for genetically predicted MAP at age >55 years. Conclusions These mendelian randomization findings support a cumulative lifetime effect of elevated blood pressure on increasing CAD risk. Clinical and public health efforts toward cardiovascular disease reduction should optimize blood pressure control throughout life
    • …
    corecore