776 research outputs found
Classical and quantum general relativity: a new paradigm
We argue that recent developments in discretizations of classical and quantum
gravity imply a new paradigm for doing research in these areas. The paradigm
consists in discretizing the theory in such a way that the resulting discrete
theory has no constraints. This solves many of the hard conceptual problems of
quantum gravity. It also appears as a useful tool in some numerical simulations
of interest in classical relativity. We outline some of the salient aspects and
results of this new framework.Comment: 8 pages, one figure, fifth prize of the Gravity Research Foundation
2005 essay competitio
Discrete quantum gravity: a mechanism for selecting the value of fundamental constants
Smolin has put forward the proposal that the universe fine tunes the values
of its physical constants through a Darwinian selection process. Every time a
black hole forms, a new universe is developed inside it that has different
values for its physical constants from the ones in its progenitor. The most
likely universe is the one which maximizes the number of black holes. Here we
present a concrete quantum gravity calculation based on a recently proposed
consistent discretization of the Einstein equations that shows that fundamental
physical constants change in a random fashion when tunneling through a
singularity.Comment: 5 pages, RevTex, 4 figures, honorable mention in the 2003 Gravity
Research Foundation Essays, to appear in Int. J. Mod. Phys.
No black hole information puzzle in a relational universe
The introduction of a relational time in quantum gravity naturally implies
that pure quantum states evolve into mixed quantum states. We show, using a
recently proposed concrete implementation, that the rate at which pure states
naturally evolve into mixed ones is faster than that due to collapsing into a
black hole that later evaporates. This is rather remarkable since the
fundamental mechanism for decoherence is usually very weak. Therefore the
``black hole information puzzle'' is rendered de-facto unobservable.Comment: 4 pages, no figures, revte
Finite, diffeomorphism invariant observables in quantum gravity
Two sets of spatially diffeomorphism invariant operators are constructed in
the loop representation formulation of quantum gravity. This is done by
coupling general relativity to an anti- symmetric tensor gauge field and using
that field to pick out sets of surfaces, with boundaries, in the spatial three
manifold. The two sets of observables then measure the areas of these surfaces
and the Wilson loops for the self-dual connection around their boundaries. The
operators that represent these observables are finite and background
independent when constructed through a proper regularization procedure.
Furthermore, the spectra of the area operators are discrete so that the
possible values that one can obtain by a measurement of the area of a physical
surface in quantum gravity are valued in a discrete set that includes integral
multiples of half the Planck area. These results make possible the construction
of a correspondence between any three geometry whose curvature is small in
Planck units and a diffeomorphism invariant state of the gravitational and
matter fields. This correspondence relies on the approximation of the classical
geometry by a piecewise flat Regge manifold, which is then put in
correspondence with a diffeomorphism invariant state of the gravity-matter
system in which the matter fields specify the faces of the triangulation and
the gravitational field is in an eigenstate of the operators that measure their
areas.Comment: Latex, no figures, 30 pages, SU-GP-93/1-
Fundamental decoherence from relational time in discrete quantum gravity: Galilean covariance
We have recently argued that if one introduces a relational time in quantum
mechanics and quantum gravity, the resulting quantum theory is such that pure
states evolve into mixed states. The rate at which states decohere depends on
the energy of the states. There is therefore the question of how this can be
reconciled with Galilean invariance. More generally, since the relational
description is based on objects that are not Dirac observables, the issue of
covariance is of importance in the formalism as a whole. In this note we work
out an explicit example of a totally constrained, generally covariant system of
non-relativistic particles that shows that the formula for the relational
conditional probability is a Galilean scalar and therefore the decoherence rate
is invariant.Comment: 10 pages, RevTe
Canonical quantum gravity in the Vassiliev invariants arena: II. Constraints, habitats and consistency of the constraint algebra
In a companion paper we introduced a kinematical arena for the discussion of
the constraints of canonical quantum gravity in the spin network representation
based on Vassiliev invariants. In this paper we introduce the Hamiltonian
constraint, extend the space of states to non-diffeomorphism invariant
``habitats'' and check that the off-shell quantum constraint commutator algebra
reproduces the classical Poisson algebra of constraints of general relativity
without anomalies. One can therefore consider the resulting set of constraints
and space of states as a consistent theory of canonical quantum gravity.Comment: 20 Pages, RevTex, many figures included with psfi
Classical Loop Actions of Gauge Theories
Since the first attempts to quantize Gauge Theories and Gravity in the loop
representation, the problem of the determination of the corresponding classical
actions has been raised. Here we propose a general procedure to determine these
actions and we explicitly apply it in the case of electromagnetism. Going to
the lattice we show that the electromagnetic action in terms of loops is
equivalent to the Wilson action, allowing to do Montecarlo calculations in a
gauge invariant way. In the continuum these actions need to be regularized and
they are the natural candidates to describe the theory in a ``confining
phase''.Comment: LaTeX 14 page
Uniform discretizations: a quantization procedure for totally constrained systems including gravity
We present a new method for the quantization of totally constrained systems
including general relativity. The method consists in constructing discretized
theories that have a well defined and controlled continuum limit. The discrete
theories are constraint-free and can be readily quantized. This provides a
framework where one can introduce a relational notion of time and that
nevertheless approximates in a well defined fashion the theory of interest. The
method is equivalent to the group averaging procedure for many systems where
the latter makes sense and provides a generalization otherwise. In the
continuum limit it can be shown to contain, under certain assumptions, the
``master constraint'' of the ``Phoenix project''. It also provides a
correspondence principle with the classical theory that does not require to
consider the semiclassical limit.Comment: 4 pages, Revte
Conditional probabilities with Dirac observables and the problem of time in quantum gravity
We combine the "evolving constants" approach to the construction of
observables in canonical quantum gravity with the Page--Wootters formulation of
quantum mechanics with a relational time for generally covariant systems. This
overcomes the objections levied by Kucha\v{r} against the latter formalism. The
construction is formulated entirely in terms of Dirac observables, avoiding in
all cases the physical observation of quantities that do not belong in the
physical Hilbert space. We work out explicitly the example of the parameterized
particle, including the calculation of the propagator. The resulting theory
also predicts a fundamental mechanism of decoherence.Comment: 4 pages, no figures, RevTe
Canonical quantum gravity in the Vassiliev invariants arena: I. Kinematical structure
We generalize the idea of Vassiliev invariants to the spin network context,
with the aim of using these invariants as a kinematical arena for a canonical
quantization of gravity. This paper presents a detailed construction of these
invariants (both ambient and regular isotopic) requiring a significant
elaboration based on the use of Chern-Simons perturbation theory which extends
the work of Kauffman, Martin and Witten to four-valent networks. We show that
this space of knot invariants has the crucial property -from the point of view
of the quantization of gravity- of being loop differentiable in the sense of
distributions. This allows the definition of diffeomorphism and Hamiltonian
constraints. We show that the invariants are annihilated by the diffeomorphism
constraint. In a companion paper we elaborate on the definition of a
Hamiltonian constraint, discuss the constraint algebra, and show that the
construction leads to a consistent theory of canonical quantum gravity.Comment: 21 Pages, RevTex, many figures included with psfi
- …
