423 research outputs found
Choosing the best yielding wheat and barley variety under high crown rot
This paper reports on a three year series (2014-2016) of Western region based trials to provide WA grain growers experimental field evidence of the effect of crown rot on barley and wheat variety yields in local environmental conditions
Superfluidity of the BEC at finite temperature
We use the classical fields approximation to study a translational flow of
the condensate with respect to the thermal cloud in a weakly interacting Bose
gas. We study both, subcritical and supercritical relative velocity cases and
analyze in detail a state of stationary flow which is reached in the dynamics.
This state corresponds to the thermal equilibrium, which is characterized by
the relative velocity of the condensate and the thermal cloud. The
superfluidity manifests itself in the existence of many thermal equilibria
varying in (the value of this velocity) the relative velocity between the
condensate and the thermal cloud. We pay a particular attention to excitation
spectra in a phonon as well as in a particle regime. Finally, we introduce a
measure of the amount of the superfluid fraction in a weakly interacting Bose
gas, allowing for the precise distinction between the superfluid and the
condensed fractions in a single and consistent framework.Comment: 8 pages, 5 figure
Recommended from our members
Inter-granular effects at high magnetic fields of cuprate and iron chalcogenide superconducting materials
The weak links effects are one of the main challenges for effective power applications of high temperature superconducting materials. Studies of these effects help for their better understanding and subsequent improvement. An overview analysis of the intergranular properties of cuprate (Y0.8Ca0.2Ba2Cu3O7-δ) and iron-based chalcogenide (FeSe0.5Te0.5) polycrystalline samples was carried out, by means of series of electro-transport experiments at different magnetic fields. The temperature evolution of the Josephson coupling and intrinsic superconductivity effects for the both systems was constructed. The FeSe0.5Te0.5 compound shows very stable and superior behavior compared to Y0.8Ca0.2BCO up to the highest magnetic fields (14T) used. We have explored FeSe0.5Te0.5 Josephson weak links influence (as a non-linear process) over the resistive transition using different AC current amplitudes and applying the sensitive AC transport third harmonics technique
hp-HGS strategy for inverse 3D DC resistivity logging measurement simulations
In this paper we present a twin adaptive strategy hp-HGS for solving inverse problems related to 3D DC borehole resistivity measurement simulations. The term "simulation of measurements" is widely used by the geophysical community. A quantity of interest, voltage, is measured at a receiver electrode located in the logging instrument. We use the self-adaptive goal-oriented hp-Finite Element Method (hp-FEM) computer simulations of the process of measurements in deviated wells (when the angle between the borehole and formation layers are < 90 deg). We also employ the hierarchical genetic search (HGS) algorithm to solve the inverse problem. Each individual in the population represents a single configuration of the formation layers. The evaluation of the individual is performed by solving the direct problem by means of the hp-FEM algorithm and by comparison with measured logging curve. We conclude the paper with some discussion on the parallelization of the algorithm. © 2012 Published by Elsevier Ltd
A hybrid method for inversion of 3D DC resistivity logging measurements
This paper focuses on the application of hp hierarchic genetic strategy (hp-HGS) for solution of a challenging problem, the inversion of 3D direct current (DC) resistivity logging measurements. The problem under consideration has been formulated as the global optimization one, for which the objective function (misfit between computed and reference data) exhibits multiple minima. In this paper, we consider the extension of the hp-HGS strategy, namely we couple the hp-HGS algorithm with a gradient based optimization method for a local search. Forward simulations are performed with a self-adaptive hp finite element method, hp-FEM. The computational cost of misfit evaluation by hp-FEM depends strongly on the assumed accuracy. This accuracy is adapted to the tree of populations generated by the hp-HGS algorithm, which makes the global phase significantly cheaper. Moreover, tree structure of demes as well as branch reduction and conditional sprouting mechanism reduces the number of expensive local searches up to the number of minima to be recognized. The common (direct and inverse) accuracy control, crucial for the hp-HGS efficiency, has been motivated by precise mathematical considerations. Numerical results demonstrate the suitability of the proposed method for the inversion of 3D DC resistivity logging measurements
Decay of multiply charged vortices at nonzero temperatures
We study the instability of multiply charged vortices in the presence of
thermal atoms and find various scenarios of splitting of such vortices. The
onset of the decay of a vortex is always preceded by the increase of a number
of thermal (uncondensed) atoms in the system and manifests itself by the sudden
rise of the amplitude of the oscillations of the quadrupole moment. Our
calculations show that the decay time gets shorter when the multiplicity of a
vortex becomes higher.Comment: 4 pages, 6 figure
Multi-objective hierarchic memetic solver for inverse parametric problems
We propose a multi-objective approach for solving challenging inverse parametric problems. The objectives are misfits for several physical descriptions of a phenomenon under consideration, whereas their domain is a common set of admissible parameters. The resulting Pareto set, or parameters close to it, constitute various alternatives of minimizing individual misfits. A special type of selection applied to the memetic solution of the multi-objective problem narrows the set of alternatives to the ones that are sufficiently coherent. The proposed strategy is exemplified by solving a real-world engineering problem consisting of the magnetotelluric measurement inversion that leads to identification of oil deposits located about 3 km under the Earth's surface, where two misfit functions are related to distinct frequencies of the electric and magnetic waves
A multi-objective memetic inverse solver reinforced by local optimization methods
We propose a new memetic strategy that can solve the multi-physics, complex inverse problems, formulated as the multi-objective optimization ones, in which objectives are misfits between the measured and simulated states of various governing processes. The multi-deme structure of the strategy allows for both, intensive, relatively cheap exploration with a moderate accuracy and more accurate search many regions of Pareto set in parallel. The special type of selection operator prefers the coherent alternative solutions, eliminating artifacts appearing in the particular processes. The additional accuracy increment is obtained by the parallel convex searches applied to the local scalarizations of the misfit vector. The strategy is dedicated for solving ill-conditioned problems, for which inverting the single physical process can lead to the ambiguous results. The skill of the selection in artifact elimination is shown on the benchmark problem, while the whole strategy was applied for identification of oil deposits, where the misfits are related to various frequencies of the magnetic and electric waves of the magnetotelluric measurement
- …