52 research outputs found

    Effects of dietary Na+ deprivation on epithelial Na+ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In rodents, dietary Na<sup>+ </sup>deprivation reduces gustatory responses of primary taste fibers and central taste neurons to lingual Na<sup>+ </sup>stimulation. However, in the rat taste bud cells Na<sup>+ </sup>deprivation increases the number of amiloride sensitive epithelial Na<sup>+ </sup>channels (ENaC), which are considered as the "receptor" of the Na<sup>+ </sup>component of salt taste. To explore the mechanisms, the expression of the three ENaC subunits (α, β and γ) in taste buds were observed from rats fed with diets containing either 0.03% (Na<sup>+ </sup>deprivation) or 1% (control) NaCl for 15 days, by using <it>in situ </it>hybridization and real-time quantitative RT-PCR (qRT-PCR). Since BDNF/TrkB signaling is involved in the neural innervation of taste buds, the effects of Na<sup>+ </sup>deprivation on BDNF and its receptor TrkB expression in the rat taste buds were also examined.</p> <p>Results</p> <p><it>In situ </it>hybridization analysis showed that all three ENaC subunit mRNAs were found in the rat fungiform taste buds and lingual epithelia, but in the vallate and foliate taste buds, only α ENaC mRNA was easily detected, while β and γ ENaC mRNAs were much less than those in the fungiform taste buds. Between control and low Na<sup>+ </sup>fed animals, the numbers of taste bud cells expressing α, β and γ ENaC subunits were not significantly different in the fungiform, vallate and foliate taste buds, respectively. Similarly, qRT-PCR also indicated that Na<sup>+ </sup>deprivation had no effect on any ENaC subunit expression in the three types of taste buds. However, Na<sup>+ </sup>deprivation reduced BDNF mRNA expression by 50% in the fungiform taste buds, but not in the vallate and foliate taste buds. The expression of TrkB was not different between control and Na<sup>+ </sup>deprived rats, irrespective of the taste papillae type.</p> <p>Conclusion</p> <p>The findings demonstrate that dietary Na<sup>+ </sup>deprivation does not change ENaC mRNA expression in rat taste buds, but reduces BDNF mRNA expression in the fungiform taste buds. Given the roles of BDNF in survival of cells and target innervation, our results suggest that dietary Na<sup>+ </sup>deprivation might lead to a loss of gustatory innervation in the mouse fungiform taste buds.</p

    Lingual deficits in neurotrophin double knockout mice

    Full text link
    Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF −/− and wild-type mice. Taste papillae morphology was severely distorted in BDNF −/− x NT-3 −/− mice compared to single BDNF −/− and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF −/− and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF −/− x NT-3 −/− mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF −/− x NT-3 −/− mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47465/1/11068_2005_Article_3330.pd

    Listening geographies: Landscape, affect and geotechnologies

    Get PDF
    This paper argues for expanded listening in geography. Expanded listening addresses how bodies of all kinds, human and more-than-human, respond to sound. We show how listening can contribute to research on a wide range of topics, beyond enquiry where sound itself is the primary substantive interest. This is demonstrated through close discussion of what an amplified sonic sensibility can bring to three areas of contemporary geographical interest: geographies of landscape, of affect, and of geotechnologies

    Building sensory receptors on the tongue

    Full text link
    Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro . Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds—the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47466/1/11068_2005_Article_3332.pd
    • …
    corecore