100 research outputs found

    Spin-dependent tunnelling through a symmetric barrier

    Full text link
    The problem of electron tunnelling through a symmetric semiconductor barrier based on zinc-blende-structure material is studied. The k3k^3 Dresselhaus terms in the effective Hamiltonian of bulk semiconductor of the barrier are shown to result in a dependence of the tunnelling transmission on the spin orientation. The difference of the transmission probabilities for opposite spin orientations can achieve several percents for the reasonable width of the barriers.Comment: 3 pages, Submitted to Phys. Rev.

    Electronic spin precession in semiconductor quantum dots with spin-orbit coupling

    Full text link
    The electronic spin precession in semiconductor dots is strongly affected by the spin-orbit coupling. We present a theory of the electronic spin resonance at low magnetic fields that predicts a strong dependence on the dot occupation, the magnetic field and the spin-orbit coupling strength. Coulomb interaction effects are also taken into account in a numerical approach.Comment: 5 pages, 4 figure

    Spin-orbit coupling and intrinsic spin mixing in quantum dots

    Full text link
    Spin-orbit coupling effects are studied in quantum dots in InSb, a narrow-gap material. Competition between different Rashba and Dresselhaus terms is shown to produce wholesale changes in the spectrum. The large (and negative) gg-factor and the Rashba field produce states where spin is no longer a good quantum number and intrinsic flips occur at moderate magnetic fields. For dots with two electrons, a singlet-triplet mixing occurs in the ground state, with observable signatures in intraband FIR absorption, and possible importance in quantum computation.Comment: REVTEX4 text with 3 figures (high resolution figs available by request). Submitted to PR

    Anisotropic transport in the two-dimensional electron gas in the presence of spin-orbit coupling

    Full text link
    In a two-dimensional electron gas as realized by a semiconductor quantum well, the presence of spin-orbit coupling of both the Rashba and Dresselhaus type leads to anisotropic dispersion relations and Fermi contours. We study the effect of this anisotropy on the electrical conductivity in the presence of fixed impurity scatterers. The conductivity also shows in general an anisotropy which can be tuned by varying the Rashba coefficient. This effect provides a method of detecting and investigating spin-orbit coupling by measuring spin-unpolarized electrical currents in the diffusive regime. Our approach is based on an exact solution of the two-dimensional Boltzmann equation and provides also a natural framework for investigating other transport effects including the anomalous Hall effect.Comment: 10 pages, 1 figure included. Discussion of experimental impact enlarged; error in calculation of conductivity contribution corrected (cf. Eq. (A14)), no changes in qualitative results and physical consequence

    Dynamical spin-electric coupling in a quantum dot

    Full text link
    Due to the spin-orbital coupling in a semiconductor quantum dot, a freely precessing electron spin produces a time-dependent charge density. This creates a sizeable electric field outside the dot, leading to promising applications in spintronics. The spin-electric coupling can be employed for non-invasive single spin detection by electrical methods. We also consider a spin relaxation mechanism due to long-range coupling to electrons in gates and elsewhere in the system, and find a contribution comparable to, and in some cases dominant over previously discussed mechanisms.Comment: 4 pages, 2 figure

    Spin Dynamics and Spin Transport

    Full text link
    Spin-orbit (SO) interaction critically influences electron spin dynamics and spin transport in bulk semiconductors and semiconductor microstructures. This interaction couples electron spin to dc and ac electric fields. Spin coupling to ac electric fields allows efficient spin manipulating by the electric component of electromagnetic field through the electric dipole spin resonance (EDSR) mechanism. Usually, it is much more efficient than the magnetic manipulation due to a larger coupling constant and the easier access to spins at a nanometer scale. The dependence of the EDSR intensity on the magnetic field direction allows measuring the relative strengths of the competing SO coupling mechanisms in quantum wells. Spin coupling to an in-plane electric field is much stronger than to a perpendicular field. Because electron bands in microstructures are spin split by SO interaction, electron spin is not conserved and spin transport in them is controlled by a number of competing parameters, hence, it is rather nontrivial. The relation between spin transport, spin currents, and spin populations is critically discussed. Importance of transients and sharp gradients for generating spin magnetization by electric fields and for ballistic spin transport is clarified.Comment: Invited talk at the 3rd Intern. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), July 21 - 23. To be published in the Journal of Superconductivity. 7 pages, 2 figure

    Spin injection into a ballistic semiconductor microstructure

    Full text link
    A theory of spin injection across a ballistic ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann regime. Spin injection coefficient γ\gamma is suppressed by the Sharvin resistance of the semiconductor rN∗=(h/e2)(π2/SN)r_N^*=(h/e^2)(\pi^2/S_N), where SNS_N is the Fermi-surface cross-section. It competes with the diffusion resistances of the ferromagnets rFr_F, and γ∼rF/rN∗≪1\gamma\sim r_F/r_N^*\ll 1 in the absence of contact barriers. Efficient spin injection can be ensured by contact barriers. Explicit formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results of the ballistic and diffusive theories of spin injection is added. To this end, some notations are changed. Three references added, typos correcte
    • …
    corecore