331 research outputs found
Weak turbulence theory of the non-linear evolution of the ion ring distribution
The nonlinear evolution of an ion ring instability in a low-beta
magnetospheric plasma is considered. The evolution of the two-dimensional ring
distribution is essentially quasilinear. Ignoring nonlinear processes the
time-scale for the quasilinear evolution is the same as for the linear
instability 1/t_ql gamma_l. However, when nonlinear processes become important,
a new time scale becomes relevant to the wave saturation mechanism. Induced
nonlinear scattering of the lower-hybrid waves by plasma electrons is the
dominant nonlinearity relevant for plasmas in the inner magnetosphere and
typically occurs on the timescale 1/t_ql w(M/m)W/nT, where W is the wave energy
density, nT is the thermal energy density of the background plasma, and M/m is
the ion to electron mass ratio, which has the consequence that the wave
amplitude saturates at a low level, and the timescale for quasilinear
relaxation is extended by orders of magnitude
Experimental Signatures of Critically Balanced Turbulence in MAST
Beam Emission Spectroscopy (BES) measurements of ion-scale density
fluctuations in the MAST tokamak are used to show that the turbulence
correlation time, the drift time associated with ion temperature or density
gradients, the particle (ion) streaming time along the magnetic field and the
magnetic drift time are consistently comparable, suggesting a "critically
balanced" turbulence determined by the local equilibrium. The resulting
scalings of the poloidal and radial correlation lengths are derived and tested.
The nonlinear time inferred from the density fluctuations is longer than the
other times; its ratio to the correlation time scales as
, where ion collision rate/streaming rate.
This is consistent with turbulent decorrelation being controlled by a zonal
component, invisible to the BES, with an amplitude exceeding the drift waves'
by .Comment: 6 pages, 4 figures, submitted to PR
ALPS: The Arbitrary Linear Plasma Solver
The Arbitrary Linear Plasma Solver (ALPS) is a parallelised numerical code
that solves the dispersion relation in a hot (even relativistic) magnetised
plasma with an arbitrary number of particle species with arbitrary gyrotropic
equilibrium distribution functions for any direction of wave propagation with
respect to the background field. ALPS reads the background momentum
distributions as tables of values on a grid, where
and are the momentum coordinates in the directions
perpendicular and parallel to the background magnetic field, respectively. We
present the mathematical and numerical approach used by ALPS and introduce our
algorithms for the handling of poles and the analytic continuation for the
Landau contour integral. We then show test calculations of dispersion relations
for a selection of stable and unstable configurations in Maxwellian,
bi-Maxwellian, -distributed, and J\"uttner-distributed plasmas. These
tests demonstrate that ALPS derives reliable plasma dispersion relations. ALPS
will make it possible to determine the properties of waves and instabilities in
the non-equilibrium plasmas that are frequently found in space, laboratory
experiments, and numerical simulations.Comment: 26 pages, 13 figures, submitte
Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas
Differential rotation is known to suppress linear instabilities in fusion
plasmas. However, even in the absence of growing eigenmodes, subcritical
fluctuations that grow transiently can lead to sustained turbulence. Here
transient growth of electrostatic fluctuations driven by the parallel velocity
gradient (PVG) and the ion temperature gradient (ITG) in the presence of a
perpendicular ExB velocity shear is considered. The maximally simplified case
of zero magnetic shear is treated in the framework of a local shearing box.
There are no linearly growing eigenmodes, so all excitations are transient. The
maximal amplification factor of initial perturbations and the corresponding
wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect
ratio), temperature gradient and velocity shear. Analytical results are
corroborated and supplemented by linear gyrokinetic numerical tests. For
sufficiently low values of q/\epsilon (<7 in our model), regimes with fully
suppressed ion-scale turbulence are possible. For cases when turbulence is not
suppressed, an elementary heuristic theory of subcritical PVG turbulence
leading to a scaling of the associated ion heat flux with q, \epsilon, velocity
shear and temperature gradient is proposed; it is argued that the transport is
much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC
ΠΡΠ΅Π½ΠΊΠ° ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΡ Π΅ΠΌ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½βΡΠΎΠ»ΡΠΎΠ»βΠ½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅
Objectives.Β To investigate the effectiveness of various options for organizing the process of diabatic distillation in the separation of a mixture of acetoneβtolueneβn-butanol by extractive distillation (ED) with dimethylformamide as an entrainer in a scheme where an entrainer is used in the first column.Methods.Β Mathematical modeling in the Aspen Plus v. 12.1 software package was used as the primary research method. The local Non-Random Two Liquid composition equation was used as a model for describing vaporβliquid equilibrium. Parametric optimization of diabatic schemes was carried out according to the criterion of reduced energy costs.Results.Β Based on ED scheme for an acetoneβtolueneβn-butanol mixture with an entrainer in the first column, four options for organizing diabatic distillation schemes were considered, both with and without increasing the temperature of the flows due to compression.Conclusion.Β It is shown that the use of diabatic schemes in the ED of an acetoneβtolueneβn-butanol mixture with dimethylformamide can decrease energy consumption by 11β17%. While the maximum reduction in energy consumption is achieved in a scheme using a compressor, the efficiency of schemes without a compressor is slightly lower. Nevertheless, the technological design of the latter is much simpler.Π¦Π΅Π»ΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π½Π΅Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½βΡΠΎΠ»ΡΠΎΠ»βΠ½-Π±ΡΡΠ°Π½ΠΎΠ» ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ Ρ Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ Π² ΡΡ
Π΅ΠΌΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π°Π³Π΅Π½ΡΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅.ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅ Aspen Plus v. 12.1. ΠΠ»Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°ΡΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²ΠΎΠ² Non-Random Two Liquid. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ Π½Π΅Π°Π΄Π΅Π°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡ
Π΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ°Ρ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡ
Π΅ΠΌΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½βΡΠΎΠ»ΡΠΎΠ»βΠ½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ Π±ΡΠ»ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΡΠ΅ΡΡΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΠ° ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΡ
Π΅ΠΌ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΊΠ°ΠΊ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΠΎΡΠΎΠΊΠΎΠ² Π·Π° ΡΡΠ΅Ρ ΡΠΆΠ°ΡΠΈΡ Π² ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ΅, ΡΠ°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡ
Π΅ΠΌ Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½βΡΠΎΠ»ΡΠΎΠ»βΠ½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΡΡΠ°ΡΡ Π½Π° 11β17%, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΎΠ·Π°ΡΡΠ°Ρ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π² ΡΡ
Π΅ΠΌΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ°. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΡ
Π΅ΠΌ Π±Π΅Π· ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ° Π½ΠΈΠΆΠ΅ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ, Π½ΠΎ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΎΡΠΌΠ»Π΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΈΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΡΠΎΡΠ΅
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡ Π΅ΠΌ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡΡΠΎΠΏΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π΄Π»Ρ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½-ΡΠΎΠ»ΡΠΎΠ»-Π½-Π±ΡΡΠ°Π½ΠΎΠ»
Objectives. The study aims to investigate the effectiveness of the use of various options for organizing the process of diabatic distillation in the separation of a mixture of acetone-toluene-n-butanol by extractive distillation using dimethylformamide as an entrainer in a scheme with preliminary separation of azeotropic components.Methods. As the main research method, mathematical modeling in the Aspen Plus V. 12 software package was used. As a model for describing vapor-liquid equilibrium, the local composition Non-Random Two Liquid equation model was used. Parametric optimization of diabatic schemes was carried out according to the criterion of reduced energy costs.Results. Based on the scheme for extractive distillation of an acetone-toluene-n-butanol mixture with preliminary separation of azeotropic components, five options for organizing diabatic distillation schemes were considered, both with and without use of a compressor to reach a required flows temperature.Conclusion. It is shown that the use of diabatic schemes in the extractive distillation of a acetone-toluene-n-butanol mixture with dimethylformamide makes it possible to diminish the reduced energy costs by 8.9-43.5%. Meanwhile the maximum reduction in energy consumption is achieved in a scheme where upper vapor flows of two other columns are used to heat the azeotropic components separating column.Π¦Π΅Π»ΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½-ΡΠΎΠ»ΡΠΎΠ»-Π½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ° Π² ΡΡ
Π΅ΠΌΠ΅ Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡΡΠΎΠΏΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ².ΠΠ΅ΡΠΎΠ΄Ρ. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΎΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ° Aspen Plus V. 12. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°ΡΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²ΠΎΠ² Non-Random Two Liquid. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡ
Π΅ΠΌ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ°Ρ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡ
Π΅ΠΌΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½-ΡΠΎΠ»ΡΠΎΠ»-Π½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡΡΠΎΠΏΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠ°Π½Π΅Π½ΡΠΎΠ² Π±ΡΠ»ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΠΏΡΡΡ Π²Π°ΡΠΈΠ°Π½ΡΠΎΠ² ΠΎΡΠ³Π°Π½ΠΈΠ·Π°ΡΠΈΠΈ ΡΡ
Π΅ΠΌ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΊΠ°ΠΊ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡΠ° Π΄Π»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΠΎΡΠΎΠΊΠΎΠ², ΡΠ°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π½Π΅Π°Π΄ΠΈΠ°Π±Π°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π² ΡΡ
Π΅ΠΌΠ΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠΈ Π°ΡΠ΅ΡΠΎΠ½-ΡΠΎΠ»ΡΠΎΠ»-Π½-Π±ΡΡΠ°Π½ΠΎΠ» Ρ Π΄ΠΈΠΌΠ΅ΡΠΈΠ»ΡΠΎΡΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ Ρ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡΡΠΎΠΏΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΡΡΠ°ΡΡ Π½Π° 8.9-43.5%, ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΎΠ·Π°ΡΡΠ°Ρ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π² ΡΡ
Π΅ΠΌΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄Π»Ρ ΠΎΠ±ΠΎΠ³ΡΠ΅Π²Π° ΠΊΠΎΠ»ΠΎΠ½Π½Ρ ΠΎΡΠ΄Π΅Π»Π΅Π½ΠΈΡ Π°Π·Π΅ΠΎΡΡΠΎΠΏΠΎΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² Π²Π΅ΡΡ
Π½ΠΈΡ
ΠΏΠ°ΡΠΎΠ²ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ² Π΄Π²ΡΡ
Π΄ΡΡΠ³ΠΈΡ
ΠΊΠΎΠ»ΠΎΠ½Π½
Statistical features of edge turbulence in RFX-mod from Gas Puffing Imaging
Plasma density fluctuations in the edge plasma of the RFX-mod device are
measured through the Gas Puffing Imaging Diagnostics. Statistical features of
the signal are quantified in terms of the Probability Distribution Function
(PDF), and computed for several kinds of discharges. The PDFs from discharges
without particular control methods are found to be adequately described by a
Gamma function, consistently with the recent results by Graves et al [J.P.
Graves, et al, Plasma Phys. Control. Fusion 47, L1 (2005)]. On the other hand,
pulses with external methods for plasma control feature modified PDFs. A first
empirical analysis suggests that they may be interpolated through a linear
combination of simple functions. An inspection of the literature shows that
this kind of PDFs is common to other devices as well, and has been suggested to
be due to the simultaneous presence of different mechanisms driving
respectively coherent bursts and gaussian background turbulence. An attempt is
made to relate differences in the PDFs to plasma conditions such as the local
shift of the plasma column. A simple phenomenological model to interpret the
nature of the PDF and assign a meaning to its parameters is also developed.Comment: 27 pages. Published in PPC
ΠΠ½Π΅ΡΠ³ΠΎΡΠ±Π΅ΡΠ΅ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ ΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»ΠΎΠ²ΡΠΉ ΡΠΏΠΈΡΡβΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»Π°ΡΠ΅ΡΠ°Ρ Ρ Π±ΡΡΠΈΠ»ΠΏΡΠΎΠΏΠΈΠΎΠ½Π°ΡΠΎΠΌ
Objectives. Determination of the effectiveness of using various types of heat pumps in the extractive distillation of an isobutyl alcoholβisobutyl acetate mixture with n-butyl propionate as the entrainer.Methods. As the main research method, mathematical modeling was performed using the Aspen Plus V. 9 software package. As a model for describing the vaporβliquid equilibrium, the local composition equation-based UNIQUAC model was employed, and the RedlichβKwong model was adopted to examine the non-ideal vapor phase. When modeling the conventional scheme of extractive distillation, parametric optimization was carried out according to the criterion of total energy costs in the reboilers of the columns. For economical evaluation, Aspen Process Economic Analyzer V10.1 tools were employed. Results. In comparison with the conventional extractive distillation scheme, three variants of schemes with vapor-recompression heat pumps were considered: with a heat pump placed on an extractive distillation column, on an extractive agent regeneration column, and with two heat pumps placed on both columns of the scheme. A scheme with an internal heat pump was also proposed, in which the heat pump compressor is located between sections of extractive columns that operate at different pressures: 506.6 kPa in the top sections and 101.3 in the bottom section. An economic analysis was conducted for all the considered schemes to calculate the total annual costs. It was shown that schemes with vapor-recompression heat pumps can significantly reduce the energy costs of extractive distillation by up to 39.6%; however, a significant reduction in the total annual costs is achieved only with sufficiently long operation periods of the plants. The reduction in the energy costs in the scheme with an internal heat pump was 44%, and the total annual costs were in the range of 20.2β30.1%, depending on the operating time of the plant. Conclusions. It was shown that using heat pumps in the extractive distillation of the mixture of isobutyl alcoholβisobutyl acetate with n-butyl propionate as the entrainer can significantly reduce energy costs. The scheme with an internal heat pump is the most economical of all the considered schemes.Π¦Π΅Π»ΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
Π½Π°ΡΠΎΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠΏΠ° Π² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ ΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»ΠΎΠ²ΡΠΉ ΡΠΏΠΈΡΡβΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»Π°ΡΠ΅ΡΠ°Ρ Ρ Π½-Π±ΡΡΠΈΠ»ΠΏΡΠΎΠΏΠΈΠΎΠ½Π°ΡΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ°. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ΅ Aspen Plus V. 9. Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ ΠΏΠ°ΡΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π²Π½ΠΎΠ²Π΅ΡΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²ΠΎΠ² ΠΌΠΎΠ΄Π΅Π»Ρ UNIQUAC, Π΄Π»Ρ ΡΡΠ΅ΡΠ° Π½Π΅ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΠ°ΡΠΎΠ²ΠΎΠΉ ΡΠ°Π·Ρ β ΠΌΠΎΠ΄Π΅Π»Ρ Π Π΅Π΄Π»ΠΈΡ
Π°βΠΠ²ΠΎΠ½Π³Π°. ΠΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»Π°ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΠΏΠΎ ΠΊΡΠΈΡΠ΅ΡΠΈΡ ΡΡΠΌΠΌΠ°ΡΠ½ΡΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ°Ρ Π² ΠΊΠΈΠΏΡΡΠΈΠ»ΡΠ½ΠΈΠΊΠ°Ρ
ΠΊΠΎΠ»ΠΎΠ½Π½. ΠΠ»Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ Aspen Process Economic Analyzer V10.1.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΡΠ°Π΄ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΡΡΠΈ Π²Π°ΡΠΈΠ°Π½ΡΠ° ΡΡ
Π΅ΠΌΡ Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
Π½Π°ΡΠΎΡΠΎΠ² ΠΎΡΠΊΡΡΡΠΎΠ³ΠΎ ΡΠΈΠΏΠ° β Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π½Π°ΡΠΎΡΠ° Π½Π° ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, Π½Π° ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ° ΠΈ Ρ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡΡ
ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
Π½Π°ΡΠΎΡΠΎΠ² Π½Π° ΠΎΠ±ΠΎΠΈΡ
ΠΊΠΎΠ»ΠΎΠ½Π½Π°Ρ
ΡΡ
Π΅ΠΌΡ. Π’Π°ΠΊΠΆΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΡ
Π΅ΠΌΠ° Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΠΌ Π½Π°ΡΠΎΡΠΎΠΌ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΊΠΎΠΌΠΏΡΠ΅ΡΡΠΎΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π½Π°ΡΠΎΡΠ° ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ΅ΠΊΡΠΈΡΠΌΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π΄Π°Π²Π»Π΅Π½ΠΈΡΡ
β 506.6 ΠΊΠΠ° Π² ΡΠΊΡΠ΅ΠΏΠ»ΡΡΡΠ΅ΠΉ ΠΈ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΡ
ΠΈ 101.3 Π² ΠΎΡΠ³ΠΎΠ½Π½ΠΎΠΉ. ΠΡΠ»Π° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠ΅Π½ΠΊΠ° Π²ΡΠ΅Ρ
ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΡΡ
Π΅ΠΌ ΠΈ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΡΡ
ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π·Π°ΡΡΠ°Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡ
Π΅ΠΌ Ρ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΠΌΠΈ Π½Π°ΡΠΎΡΠ°ΠΌΠΈ ΠΎΡΠΊΡΡΡΠΎΠ³ΠΎ ΡΠΈΠΏΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ, Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ 39.6%, ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΡΡΠ°ΡΡ Π½Π° ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΡΡ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΡΡ
ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π·Π°ΡΡΠ°Ρ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΎΠΊ. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·Π°ΡΡΠ°Ρ Π² ΡΡ
Π΅ΠΌΠ΅ Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΠΌ Π½Π°ΡΠΎΡΠΎΠΌ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 44%, Π° ΠΏΠΎΠ»Π½ΡΡ
ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΡΡ
Π·Π°ΡΡΠ°Ρ β 20.2β30.1% Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
Π½Π°ΡΠΎΡΠΎΠ² Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΡΠ΅ΠΊΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΌΠ΅ΡΠΈ ΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»ΠΎΠ²ΡΠΉ ΡΠΏΠΈΡΡβΠΈΠ·ΠΎΠ±ΡΡΠΈΠ»Π°ΡΠ΅ΡΠ°Ρ Ρ Π±ΡΡΠΈΠ»ΠΏΡΠΎΠΏΠΈΠΎΠ½Π°ΡΠΎΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°ΡΡΠ°ΡΡ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ½ΠΎΠΉ ΠΈΠ· ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π½ΡΡ
ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡ
Π΅ΠΌΠ° Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Π½Π°ΡΠΎΡΠ°
A functorial construction of moduli of sheaves
We show how natural functors from the category of coherent sheaves on a
projective scheme to categories of Kronecker modules can be used to construct
moduli spaces of semistable sheaves. This construction simplifies or clarifies
technical aspects of existing constructions and yields new simpler definitions
of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in
Inventiones Mathematicae. Slight change in the definition of the Kronecker
algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations
elsewhere, to make the constructions work for non-reduced schemes. Section
6.5 rewritten. Remark 2.6 and new references adde
- β¦