331 research outputs found

    Weak turbulence theory of the non-linear evolution of the ion ring distribution

    Full text link
    The nonlinear evolution of an ion ring instability in a low-beta magnetospheric plasma is considered. The evolution of the two-dimensional ring distribution is essentially quasilinear. Ignoring nonlinear processes the time-scale for the quasilinear evolution is the same as for the linear instability 1/t_ql gamma_l. However, when nonlinear processes become important, a new time scale becomes relevant to the wave saturation mechanism. Induced nonlinear scattering of the lower-hybrid waves by plasma electrons is the dominant nonlinearity relevant for plasmas in the inner magnetosphere and typically occurs on the timescale 1/t_ql w(M/m)W/nT, where W is the wave energy density, nT is the thermal energy density of the background plasma, and M/m is the ion to electron mass ratio, which has the consequence that the wave amplitude saturates at a low level, and the timescale for quasilinear relaxation is extended by orders of magnitude

    Experimental Signatures of Critically Balanced Turbulence in MAST

    Full text link
    Beam Emission Spectroscopy (BES) measurements of ion-scale density fluctuations in the MAST tokamak are used to show that the turbulence correlation time, the drift time associated with ion temperature or density gradients, the particle (ion) streaming time along the magnetic field and the magnetic drift time are consistently comparable, suggesting a "critically balanced" turbulence determined by the local equilibrium. The resulting scalings of the poloidal and radial correlation lengths are derived and tested. The nonlinear time inferred from the density fluctuations is longer than the other times; its ratio to the correlation time scales as Ξ½βˆ—iβˆ’0.8Β±0.1\nu_{*i}^{-0.8\pm0.1}, where Ξ½βˆ—i=\nu_{*i}= ion collision rate/streaming rate. This is consistent with turbulent decorrelation being controlled by a zonal component, invisible to the BES, with an amplitude exceeding the drift waves' by βˆΌΞ½βˆ—iβˆ’0.8\sim \nu_{*i}^{-0.8}.Comment: 6 pages, 4 figures, submitted to PR

    ALPS: The Arbitrary Linear Plasma Solver

    Get PDF
    The Arbitrary Linear Plasma Solver (ALPS) is a parallelised numerical code that solves the dispersion relation in a hot (even relativistic) magnetised plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribution functions for any direction of wave propagation with respect to the background field. ALPS reads the background momentum distributions as tables of values on a (pβŠ₯,pβˆ₯)(p_{\perp},p_{\parallel}) grid, where pβŠ₯p_{\perp} and pβˆ₯p_{\parallel } are the momentum coordinates in the directions perpendicular and parallel to the background magnetic field, respectively. We present the mathematical and numerical approach used by ALPS and introduce our algorithms for the handling of poles and the analytic continuation for the Landau contour integral. We then show test calculations of dispersion relations for a selection of stable and unstable configurations in Maxwellian, bi-Maxwellian, ΞΊ\kappa-distributed, and J\"uttner-distributed plasmas. These tests demonstrate that ALPS derives reliable plasma dispersion relations. ALPS will make it possible to determine the properties of waves and instabilities in the non-equilibrium plasmas that are frequently found in space, laboratory experiments, and numerical simulations.Comment: 26 pages, 13 figures, submitte

    Suppression of turbulence and subcritical fluctuations in differentially rotating gyrokinetic plasmas

    Full text link
    Differential rotation is known to suppress linear instabilities in fusion plasmas. However, even in the absence of growing eigenmodes, subcritical fluctuations that grow transiently can lead to sustained turbulence. Here transient growth of electrostatic fluctuations driven by the parallel velocity gradient (PVG) and the ion temperature gradient (ITG) in the presence of a perpendicular ExB velocity shear is considered. The maximally simplified case of zero magnetic shear is treated in the framework of a local shearing box. There are no linearly growing eigenmodes, so all excitations are transient. The maximal amplification factor of initial perturbations and the corresponding wavenumbers are calculated as functions of q/\epsilon (=safety factor/aspect ratio), temperature gradient and velocity shear. Analytical results are corroborated and supplemented by linear gyrokinetic numerical tests. For sufficiently low values of q/\epsilon (<7 in our model), regimes with fully suppressed ion-scale turbulence are possible. For cases when turbulence is not suppressed, an elementary heuristic theory of subcritical PVG turbulence leading to a scaling of the associated ion heat flux with q, \epsilon, velocity shear and temperature gradient is proposed; it is argued that the transport is much less stiff than in the ITG regime.Comment: 36 pages in IOP latex style; 12 figures; submitted to PPC

    ΠžΡ†Π΅Π½ΠΊΠ° энСргСтичСской эффСктивности схСм нСадиабатичСской Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ацСтон–толуол–н-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с использованиСм экстрактивного Π°Π³Π΅Π½Ρ‚Π° Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅

    Get PDF
    Objectives.Β To investigate the effectiveness of various options for organizing the process of diabatic distillation in the separation of a mixture of acetone–toluene–n-butanol by extractive distillation (ED) with dimethylformamide as an entrainer in a scheme where an entrainer is used in the first column.Methods.Β Mathematical modeling in the Aspen Plus v. 12.1 software package was used as the primary research method. The local Non-Random Two Liquid composition equation was used as a model for describing vapor–liquid equilibrium. Parametric optimization of diabatic schemes was carried out according to the criterion of reduced energy costs.Results.Β Based on ED scheme for an acetone–toluene–n-butanol mixture with an entrainer in the first column, four options for organizing diabatic distillation schemes were considered, both with and without increasing the temperature of the flows due to compression.Conclusion.Β It is shown that the use of diabatic schemes in the ED of an acetone–toluene–n-butanol mixture with dimethylformamide can decrease energy consumption by 11–17%. While the maximum reduction in energy consumption is achieved in a scheme using a compressor, the efficiency of schemes without a compressor is slightly lower. Nevertheless, the technological design of the latter is much simpler.Π¦Π΅Π»ΠΈ. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса нСдиабатичСской Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ смСси ацСтон–толуол–н-Π±ΡƒΡ‚Π°Π½ΠΎΠ» экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ с Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ Π² схСмС с использованиСм экстрактивного Π°Π³Π΅Π½Ρ‚Π° Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅.ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС Aspen Plus v. 12.1. Для модСлирования пароТидкостного равновСсия примСняли ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… составов Non-Random Two Liquid. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ оптимизация нСадСабатичСских схСм ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… энСргСтичСских Π·Π°Ρ‚Ρ€Π°Ρ‚.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основС схСмы экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ацСтон–толуол–н-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с использованиСм Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ Π±Ρ‹Π»ΠΎ рассмотрСно Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ схСм нСадиабатичСской Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π·Π° счСт сТатия Π² компрСссорС, Ρ‚Π°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСадиабатичСских схСм Π² экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ацСтон–толуол–н-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ энСргСтичСскиС Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° 11–17%, ΠΏΡ€ΠΈ этом максимальноС сниТСниС энСргозатрат достигаСтся Π² схСмС с использованиСм компрСссора. Однако ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ схСм Π±Π΅Π· компрСссора Π½ΠΈΠΆΠ΅ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π½ΠΎ тСхнологичСскоС ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ сущСствСнно ΠΏΡ€ΠΎΡ‰Π΅

    ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ схСм нСадиабатичСской экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡ‚Ρ€ΠΎΠΏΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² для раздСлСния смСси Π°Ρ†Π΅Ρ‚ΠΎΠ½-Ρ‚ΠΎΠ»ΡƒΠΎΠ»-Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ»

    Get PDF
    Objectives. The study aims to investigate the effectiveness of the use of various options for organizing the process of diabatic distillation in the separation of a mixture of acetone-toluene-n-butanol by extractive distillation using dimethylformamide as an entrainer in a scheme with preliminary separation of azeotropic components.Methods. As the main research method, mathematical modeling in the Aspen Plus V. 12 software package was used. As a model for describing vapor-liquid equilibrium, the local composition Non-Random Two Liquid equation model was used. Parametric optimization of diabatic schemes was carried out according to the criterion of reduced energy costs.Results. Based on the scheme for extractive distillation of an acetone-toluene-n-butanol mixture with preliminary separation of azeotropic components, five options for organizing diabatic distillation schemes were considered, both with and without use of a compressor to reach a required flows temperature.Conclusion. It is shown that the use of diabatic schemes in the extractive distillation of a acetone-toluene-n-butanol mixture with dimethylformamide makes it possible to diminish the reduced energy costs by 8.9-43.5%. Meanwhile the maximum reduction in energy consumption is achieved in a scheme where upper vapor flows of two other columns are used to heat the azeotropic components separating column.Π¦Π΅Π»ΠΈ. ИсслСдованиС энСргСтичСской эффСктивности примСнСния нСадиабатичСской экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ смСси Π°Ρ†Π΅Ρ‚ΠΎΠ½-Ρ‚ΠΎΠ»ΡƒΠΎΠ»-Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ Π² качСствС Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° Π² схСмС с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡ‚Ρ€ΠΎΠΏΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ качСствС основного ΠΌΠ΅Ρ‚ΠΎΠ΄Π° исслСдования ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΎΡΡŒ матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ с использованиСм ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠ³ΠΎ комплСкса Aspen Plus V. 12. ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ пароТидкостного равновСсия ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ ΠΏΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… составов Non-Random Two Liquid. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠ°Ρ оптимизация нСадиабатичСских схСм ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… энСргСтичСских Π·Π°Ρ‚Ρ€Π°Ρ‚.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. На основС схСмы экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси Π°Ρ†Π΅Ρ‚ΠΎΠ½-Ρ‚ΠΎΠ»ΡƒΠΎΠ»-Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡ‚Ρ€ΠΎΠΏΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠ°Π½Π΅Π½Ρ‚ΠΎΠ² Π±Ρ‹Π»ΠΎ рассмотрСно ΠΏΡΡ‚ΡŒ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ схСм нСадиабатичСской Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, ΠΊΠ°ΠΊ с использованиСм компрСссора для достиТСния Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ², Ρ‚Π°ΠΊ ΠΈ Π±Π΅Π· Π½Π΅Π³ΠΎ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нСадиабатичСской экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Π² схСмС раздСлСния смСси Π°Ρ†Π΅Ρ‚ΠΎΠ½-Ρ‚ΠΎΠ»ΡƒΠΎΠ»-Π½-Π±ΡƒΡ‚Π°Π½ΠΎΠ» с Π΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Ρ„ΠΎΡ€ΠΌΠ°ΠΌΠΈΠ΄ΠΎΠΌ с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ Π°Π·Π΅ΠΎΡ‚Ρ€ΠΎΠΏΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ энСргСтичСскиС Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° 8.9-43.5%, ΠΏΡ€ΠΈ этом максимальноС сниТСниС энСргозатрат достигаСтся Π² схСмС с использованиСм для ΠΎΠ±ΠΎΠ³Ρ€Π΅Π²Π° ΠΊΠΎΠ»ΠΎΠ½Π½Ρ‹ отдСлСния Π°Π·Π΅ΠΎΡ‚Ρ€ΠΎΠΏΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΏΠ°Ρ€ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² Π΄Π²ΡƒΡ… Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΊΠΎΠ»ΠΎΠ½Π½

    Statistical features of edge turbulence in RFX-mod from Gas Puffing Imaging

    Get PDF
    Plasma density fluctuations in the edge plasma of the RFX-mod device are measured through the Gas Puffing Imaging Diagnostics. Statistical features of the signal are quantified in terms of the Probability Distribution Function (PDF), and computed for several kinds of discharges. The PDFs from discharges without particular control methods are found to be adequately described by a Gamma function, consistently with the recent results by Graves et al [J.P. Graves, et al, Plasma Phys. Control. Fusion 47, L1 (2005)]. On the other hand, pulses with external methods for plasma control feature modified PDFs. A first empirical analysis suggests that they may be interpolated through a linear combination of simple functions. An inspection of the literature shows that this kind of PDFs is common to other devices as well, and has been suggested to be due to the simultaneous presence of different mechanisms driving respectively coherent bursts and gaussian background turbulence. An attempt is made to relate differences in the PDFs to plasma conditions such as the local shift of the plasma column. A simple phenomenological model to interpret the nature of the PDF and assign a meaning to its parameters is also developed.Comment: 27 pages. Published in PPC

    ЭнСргосбСрСТСниС Π² экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ΠΈΠ·ΠΎΠ±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΉ спирт–изобутилацСтат с Π±ΡƒΡ‚ΠΈΠ»ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½Π°Ρ‚ΠΎΠΌ

    Get PDF
    Objectives. Determination of the effectiveness of using various types of heat pumps in the extractive distillation of an isobutyl alcohol–isobutyl acetate mixture with n-butyl propionate as the entrainer.Methods. As the main research method, mathematical modeling was performed using the Aspen Plus V. 9 software package. As a model for describing the vapor–liquid equilibrium, the local composition equation-based UNIQUAC model was employed, and the Redlich–Kwong model was adopted to examine the non-ideal vapor phase. When modeling the conventional scheme of extractive distillation, parametric optimization was carried out according to the criterion of total energy costs in the reboilers of the columns. For economical evaluation, Aspen Process Economic Analyzer V10.1 tools were employed. Results. In comparison with the conventional extractive distillation scheme, three variants of schemes with vapor-recompression heat pumps were considered: with a heat pump placed on an extractive distillation column, on an extractive agent regeneration column, and with two heat pumps placed on both columns of the scheme. A scheme with an internal heat pump was also proposed, in which the heat pump compressor is located between sections of extractive columns that operate at different pressures: 506.6 kPa in the top sections and 101.3 in the bottom section. An economic analysis was conducted for all the considered schemes to calculate the total annual costs. It was shown that schemes with vapor-recompression heat pumps can significantly reduce the energy costs of extractive distillation by up to 39.6%; however, a significant reduction in the total annual costs is achieved only with sufficiently long operation periods of the plants. The reduction in the energy costs in the scheme with an internal heat pump was 44%, and the total annual costs were in the range of 20.2–30.1%, depending on the operating time of the plant. Conclusions. It was shown that using heat pumps in the extractive distillation of the mixture of isobutyl alcohol–isobutyl acetate with n-butyl propionate as the entrainer can significantly reduce energy costs. The scheme with an internal heat pump is the most economical of all the considered schemes.Π¦Π΅Π»ΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ эффСктивности примСнСния Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… насосов Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° Π² экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ΠΈΠ·ΠΎΠ±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΉ спирт–изобутилацСтат с Π½-Π±ΡƒΡ‚ΠΈΠ»ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½Π°Ρ‚ΠΎΠΌ Π² качСствС Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. Основной ΠΌΠ΅Ρ‚ΠΎΠ΄ исслСдования – матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΌ комплСксС Aspen Plus V. 9. Π’ качСствС ΠΌΠΎΠ΄Π΅Π»ΠΈ описания пароТидкостного равновСсия ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»Π°ΡΡŒ основанная Π½Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… составов модСль UNIQUAC, для ΡƒΡ‡Π΅Ρ‚Π° Π½Π΅ΠΈΠ΄Π΅Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠΉ Ρ„Π°Π·Ρ‹ – модСль Π Π΅Π΄Π»ΠΈΡ…Π°β€“ΠšΠ²ΠΎΠ½Π³Π°. ΠŸΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ схСмы экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»Π°ΡΡŒ парамСтричСская оптимизация ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ суммарных энСргСтичСских Π·Π°Ρ‚Ρ€Π°Ρ‚ Π² ΠΊΠΈΠΏΡΡ‚ΠΈΠ»ΡŒΠ½ΠΈΠΊΠ°Ρ… ΠΊΠΎΠ»ΠΎΠ½Π½. Для экономичСской ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΠ»ΠΈΡΡŒ инструмСнты Aspen Process Economic Analyzer V10.1.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ сравнСнии с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ схСмой экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ рассмотрСно Ρ‚Ρ€ΠΈ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° схСмы с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… насосов ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° – с Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ насоса Π½Π° ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ, Π½Π° ΠΊΠΎΠ»ΠΎΠ½Π½Π΅ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° ΠΈ с Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… насосов Π½Π° ΠΎΠ±ΠΎΠΈΡ… ΠΊΠΎΠ»ΠΎΠ½Π½Π°Ρ… схСмы. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° схСма с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹ΠΌ насосом, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ компрСссор Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ насоса располоТСн ΠΌΠ΅ΠΆΠ΄Ρƒ сСкциями экстрактивной ΠΊΠΎΠ»ΠΎΠ½Π½Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… давлСниях – 506.6 кПа Π² ΡƒΠΊΡ€Π΅ΠΏΠ»ΡΡŽΡ‰Π΅ΠΉ ΠΈ экстрактивной сСкциях ΠΈ 101.3 Π² ΠΎΡ‚Π³ΠΎΠ½Π½ΠΎΠΉ. Π‘Ρ‹Π»Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° экономичСская ΠΎΡ†Π΅Π½ΠΊΠ° всСх рассмотрСнных схСм ΠΈ вычислСниС ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ схСм с Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹ΠΌΠΈ насосами ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° позволяСт Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ 39.6%, ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ энСргСтичСскиС Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹ Π½Π° ΡΠΊΡΡ‚Ρ€Π°ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΡŽ, ΠΎΠ΄Π½Π°ΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сниТСниС ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚ достигаСтся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ достаточно большом срокС функционирования установок. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ энСргСтичСских Π·Π°Ρ‚Ρ€Π°Ρ‚ Π² схСмС с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹ΠΌ насосом составило 44%, Π° ΠΏΠΎΠ»Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… Π·Π°Ρ‚Ρ€Π°Ρ‚ – 20.2–30.1% Π² зависимости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ функционирования установки.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… насосов Π² процСссС экстрактивной Ρ€Π΅ΠΊΡ‚ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ смСси ΠΈΠ·ΠΎΠ±ΡƒΡ‚ΠΈΠ»ΠΎΠ²Ρ‹ΠΉ спирт–изобутилацСтат с Π±ΡƒΡ‚ΠΈΠ»ΠΏΡ€ΠΎΠΏΠΈΠΎΠ½Π°Ρ‚ΠΎΠΌ Π² качСствС Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π° позволяСт Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ энСргСтичСскиС Π·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹. НаиболСС экономичной ΠΈΠ· рассмотрСнных являСтся схСма с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ насоса

    A functorial construction of moduli of sheaves

    Full text link
    We show how natural functors from the category of coherent sheaves on a projective scheme to categories of Kronecker modules can be used to construct moduli spaces of semistable sheaves. This construction simplifies or clarifies technical aspects of existing constructions and yields new simpler definitions of theta functions, about which more complete results can be proved.Comment: 52 pp. Dedicated to the memory of Joseph Le Potier. To appear in Inventiones Mathematicae. Slight change in the definition of the Kronecker algebra in Secs 1 (p3) and 2.2 (p6), with corresponding small alterations elsewhere, to make the constructions work for non-reduced schemes. Section 6.5 rewritten. Remark 2.6 and new references adde
    • …
    corecore