162 research outputs found
Asymptotics for the number of n-quasigroups of order 4
The asymptotic form of the number of n-quasigroups of order 4 is . Keywords: n-quasigroups, MDS codes, decomposability,
reducibility.Comment: 15 p., 3 fi
On the volumes and affine types of trades
A -trade is a pair of disjoint collections of subsets
(blocks) of a -set such that for every , any -subset of
is included in the same number of blocks of and of . It follows
that and this common value is called the volume of . If we
restrict all the blocks to have the same size, we obtain the classical
-trades as a special case of -trades. It is known that the minimum
volume of a nonempty -trade is . Simple -trades (i.e., those
with no repeated blocks) correspond to a Boolean function of degree at most
. From the characterization of Kasami--Tokura of such functions with
small number of ones, it is known that any simple -trade of volume at most
belongs to one of two affine types, called Type\,(A) and Type\,(B)
where Type\,(A) -trades are known to exist. By considering the affine
rank, we prove that -trades of Type\,(B) do not exist. Further, we derive
the spectrum of volumes of simple trades up to , extending the
known result for volumes less than . We also give a
characterization of "small" -trades for . Finally, an algorithm to
produce -trades for specified , is given. The result of the
implementation of the algorithm for , is reported.Comment: 30 pages, final version, to appear in Electron. J. Combi
Smooth optimal control with Floquet theory
This paper describes an approach to construct temporally shaped control
pulses that drive a quantum system towards desired properties. A
parametrization in terms of periodic functions with pre-defined frequencies
permits to realize a smooth, typically simple shape of the pulses; their
optimization can be performed based on a variational analysis with Floquet
theory. As we show with selected specific examples, this approach permits to
control the dynamics of interacting spins, such that gate operations and
entanglement dynamics can be implemented with very high accuracy
Robust optimal quantum gates for Josephson charge qubits
Quantum optimal control theory allows to design accurate quantum gates. We
employ it to design high-fidelity two-bit gates for Josephson charge qubits in
the presence of both leakage and noise. Our protocol considerably increases the
fidelity of the gate and, more important, it is quite robust in the disruptive
presence of 1/f noise. The improvement in the gate performances discussed in
this work (errors of the order of 10^{-3}-10^{-4} in realistic cases) allows to
cross the fault tolerance threshold.Comment: 4 pages, 4 figure
Implementation of Fault-tolerant Quantum Logic Gates via Optimal Control
The implementation of fault-tolerant quantum gates on encoded logic qubits is
considered. It is shown that transversal implementation of logic gates based on
simple geometric control ideas is problematic for realistic physical systems
suffering from imperfections such as qubit inhomogeneity or uncontrollable
interactions between qubits. However, this problem can be overcome by
formulating the task as an optimal control problem and designing efficient
algorithms to solve it. In particular, we can find solutions that implement all
of the elementary logic gates in a fixed amount of time with limited control
resources for the five-qubit stabilizer code. Most importantly, logic gates
that are extremely difficult to implement using conventional techniques even
for ideal systems, such as the T-gate for the five-qubit stabilizer code, do
not appear to pose a problem for optimal control.Comment: 18 pages, ioptex, many figure
Errors in quantum optimal control and strategy for the search of easily implementable control pulses
We introduce a new approach to assess the error of control problems we aim to
optimize. The method offers a strategy to define new control pulses that are
not necessarily optimal but still able to yield an error not larger than some
fixed a priori threshold, and therefore provide control pulses that might be
more amenable for an experimental implementation. The formalism is applied to
an exactly solvable model and to the Landau-Zener model, whose optimal control
problem is solvable only numerically. The presented method is of importance for
applications where a high degree of controllability of the dynamics of quantum
systems is required.Comment: 13 pages, 3 figure
Photon storage in Lambda-type optically dense atomic media. II. Free-space model
In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we
presented a universal physical picture for describing a wide range of
techniques for storage and retrieval of photon wave packets in Lambda-type
atomic media in free space, including the adiabatic reduction of the photon
group velocity, pulse-propagation control via off-resonant Raman techniques,
and photon-echo based techniques. This universal picture produced an optimal
control strategy for photon storage and retrieval applicable to all approaches
and yielded identical maximum efficiencies for all of them. In the present
paper, we present the full details of this analysis as well some of its
extensions, including the discussion of the effects of non-degeneracy of the
two lower levels of the Lambda system. The analysis in the present paper is
based on the intuition obtained from the study of photon storage in the cavity
model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new
references, higher resolution of figure
On Pure Spinor Superfield Formalism
We show that a certain superfield formalism can be used to find an off-shell
supersymmetric description for some supersymmetric field theories where
conventional superfield formalism does not work. This "new" formalism contains
even auxiliary variables in addition to conventional odd super-coordinates. The
idea of this construction is similar to the pure spinor formalism developed by
N.Berkovits. It is demonstrated that using this formalism it is possible to
prove that the certain Chern-Simons-like (Witten's OSFT-like) theory can be
considered as an off-shell version for some on-shell supersymmetric field
theories. We use the simplest non-trivial model found in [2] to illustrate the
power of this pure spinor superfield formalism. Then we redo all the
calculations for the case of 10-dimensional Super-Yang-Mills theory. The
construction of off-shell description for this theory is more subtle in
comparison with the model of [2] and requires additional Z_2 projection. We
discover experimentally (through a direct explicit calculation) a non-trivial
Z_2 duality at the level of Feynman diagrams. The nature of this duality
requires a better investigation
Optimal control of atom transport for quantum gates in optical lattices
By means of optimal control techniques we model and optimize the manipulation
of the external quantum state (center-of-mass motion) of atoms trapped in
adjustable optical potentials. We consider in detail the cases of both non
interacting and interacting atoms moving between neighboring sites in a lattice
of a double-well optical potentials. Such a lattice can perform
interaction-mediated entanglement of atom pairs and can realize two-qubit
quantum gates. The optimized control sequences for the optical potential allow
transport faster and with significantly larger fidelity than is possible with
processes based on adiabatic transport.Comment: revised version: minor changes, 2 references added, published versio
Quantum control theory for coupled 2-electron dynamics in quantum dots
We investigate optimal control strategies for state to state transitions in a
model of a quantum dot molecule containing two active strongly interacting
electrons. The Schrodinger equation is solved nonperturbatively in conjunction
with several quantum control strategies. This results in optimized electric
pulses in the THz regime which can populate combinations of states with very
short transition times. The speedup compared to intuitively constructed pulses
is an order of magnitude. We furthermore make use of optimized pulse control in
the simulation of an experimental preparation of the molecular quantum dot
system. It is shown that exclusive population of certain excited states leads
to a complete suppression of spin dephasing, as was indicated in Nepstad et al.
[Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure
- …