7,993 research outputs found

    Ferromagnetic transition in a double-exchange system containing impurities in the Dynamical Mean Field Approximation

    Full text link
    We formulate the Dynamical Mean Field Approximation equations for the double-exchange system with quenched disorder for arbitrary relation between Hund exchange coupling and electron band width. Close to the ferromagnetic-paramagnetic transition point the DMFA equations can be reduced to the ordinary mean field equation of Curie-Weiss type. We solve the equation to find the transition temperature and present the magnetic phase diagram of the system.Comment: 5 pages, latex, 2 eps figures. We explicitely present the magnetic phase diagram of the syste

    NMR Determination of an Incommensurate Helical Antiferromagnetic Structure in EuCo2As2

    Get PDF
    We report 153^{153}Eu, 75^{75}As and 59^{59}Co nuclear magnetic resonance (NMR) results on EuCo2_2As2_2 single crystal. Observations of 153^{153}Eu and 75^{75}As NMR spectra in zero magnetic field at 4.3 K below an antiferromagnetic (AFM) ordering temperature TNT_{\rm N} = 45 K and its external magnetic field dependence clearly evidence an incommensurate helical AFM structure in EuCo2_2As2_2. Furthermore, based on 59^{59}Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k{\bf k} = (0, 0, 0.73 ±\pm 0.07)2π\pi/cc where cc is the cc lattice parameter. Thus the incommensurate helical AFM state was characterized by only NMR data with model-independent analyses, showing NMR to be a unique tool for determination of the spin structure in incommensurate helical AFMs.Comment: 6 pages, 4 figures, accepted for publication in Phys.Rev.

    Low-energy excitations in the S=(1/2) molecular nanomagnet K6[V<sub>15</sub><sup>IV</sup>As6O42(H2O)]·8H2O from proton NMR and µSR

    Get PDF
    Zero- and longitudinal-field muon-spin-rotation (µSR) and 1H NMR measurements on the S=(1/2) molecular nanomagnet K6[V15IVAs6O42(H2O)]·8H2O are presented. In LF experiments, the muon asymmetry P(t) was fitted by the sum of three different exponential components with fixed weights. The different muon relaxation rates lambdai (i=1,2,3) and the low-field H=0.23 T 1H NMR spin-lattice relaxation rate 1/T1 show a similar behavior for T>50 K: starting from room temperature they increase as the temperature is decreased. The increase of lambdai and 1/T1 can be attributed to the "condensation" of the system toward the lowest-lying energy levels. The gap Delta~550 K between the first and second S=(3/2) excited states was determined experimentally. For T<2 K, the muon relaxation rates lambdai stay constant, independently of the field value H<=0.15 T. The behavior for T<2 K strongly suggests that, at low T, the spin fluctuations are not thermally driven but rather originate from quasielastic intramolecular or intermolecular magnetic interactions. We suggest that the very-low-temperature relaxation rates could be driven by energy exchanges between two almost degenerate S=(1/2) ground states and/or by quantum effects

    A theory of strongly orthotropic continuum mechanics

    Get PDF
    This paper presents a theory of continuum mechanics for strongly orthotropic materials that proposes a more informative asymmetric strain and rotation tensor. The infinitesimal strain tensor and, likewise, Green-Lagrange strains avoid rotational sensitivity by the use of effective shear strain averaging. The linear formulation of the proposed non-symmetric strain tensor field instead differentiates planar shear strains based on principal material direction and mechanical properties – adding determinacy to the otherwise geometric problem. The separation of in-plane shears also allows the formulation of a first order rotation tensor that gives change in principal property direction when applied to orthotropic materials – which is a new interpretation of rigid body rotation. Subsequent to the theory, a new extended Mohr’s plot and compliance tensor are presented. It is demonstrated in a numerical example that application of the proposed tensors yields the best solution when compared with an analytical model and three conventional solvers for a finite shear deformation

    Control of the finite size corrections in exact diagonalization studies

    Full text link
    We study the possibility of controlling the finite size corrections in exact diagonalization studies quantitatively. We consider the one- and two dimensional Hubbard model. We show that the finite-size corrections can be be reduced systematically by a grand-canonical integration over boundary conditions. We find, in general, an improvement of one order of magnitude with respect to studies with periodic boundary conditions only. We present results for ground-state properties of the 2D Hubbard model and an evaluation of the specific heat for the 1D and 2D Hubbard model.Comment: Phys. Rev. B (Brief Report), in pres

    A survey of thermodynamic properties of the compounds of the elements CHNOPS Progress report, 1 Oct. - 31 Dec. 1966

    Get PDF
    Thermodynamic properties for compounds of the elements carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfu
    • …
    corecore