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Abstract: This paper presents a theory of continuum mechanics for strongly orthotropic materials that 
proposes a more informative asymmetric strain and rotation tensor. The infinitesimal strain tensor and, 
likewise, Green-Lagrange strains avoid rotational sensitivity by the use of effective shear strain 
averaging. The linear formulation of the proposed non-symmetric strain tensor field instead 
differentiates planar shear strains based on principal material direction and mechanical properties – 
adding determinacy to the otherwise geometric problem. The separation of in-plane shears also allows 
the formulation of a first order rotation tensor that gives change in principal property direction when 
applied to orthotropic materials – which is a new interpretation of rigid body rotation. Subsequent to 
the theory, a new extended Mohr’s plot and compliance tensor are presented. It is demonstrated in a 
numerical example that application of the proposed tensors yields the best solution when compared 
with an analytical model and three conventional solvers for a finite shear deformation. 
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1 Introduction 

Strongly orthotropic materials such as continuous fibre reinforced composites exhibit directional 
behaviour and thus provide more capabilities for mission and application tailored design than regular 
isotropic materials. The directional properties introduced by their anisotropic makeup, however, 
complicate their deformation and further the assumptions required for continuum mechanics analysis. 
A number of issues stem from the use of symmetric strain tensors, derived for isotropic media [1, 2], 
that are necessitated by the requirement for insensitivity to small rigid body rotation [3]. Without the 
averaging of in-plane shear terms, there exist an infinite number of compatible modes for any distorted 
state. Affected by this in particular, strongly orthotropic materials magnify an associated second order 
error under finite deformation due to the relatively inextensible nature of the fibres. 

Significant recent attention has been directed towards this strongly orthotropic class of materials: 
Boisse [4], in eliminating any such continuum assumptions, used a multi-scale approach to accurately 
model sub-structural response of woven fibre composites in forming; although this came with the 
associated computational expense. By instead treating individual fibre families in their own material 
coordinate systems, and by using the kinematic assumptions developed by Spencer [5], Xu et al [6] 
were able to decompose and tailor the strain tensor to an associated constitutive model. This 
approach, whilst being kinematically improved, could not encompass the effect of a matrix component 
comparable in stiffness to the fibres. In simulating this particular forming problem, the most practical 
method was developed by Yu et al [7], whose investigative efforts concluded that a simple remedy 
was to strictly align meshes with material orientation. Whilst also solving numerical locking problems, 
this method allowed the material response to be mapped directly against experimental results, thus 
usurping the need for involved tensorial treatment. This, nonetheless, could not be considered a 
continuum mechanics solution, and required significant empirical data. In modelling similar materials, 
including structurally reinforced elastomeric materials, recent work by Nedjar [8] addressed these 
same issues by the use of structural tensors. Building on developments largely by Klinkel [9], this 
formulation allowed the projection components of deformation to be treated uniquely for any number of 
fibre families. Effectively, this and the various aforementioned efforts have treated material 
coordinates as being pinned to fibre direction, thus the commonality has been to treat the materials 
not as strongly, but infinitely orthotropic in terms of deformation modality. Thus there remains an error 
associated with any orthotropic material under finite distortive strain that has not yet been addressed. 

This paper presents a continuum mechanics basis that models the asymmetric strain state and 
material principal rotation continuously from isotropy to strongly orthotropic material. This is based on 
the postulation of asymmetrically equilibrated yet determinate strain states using dependency on the 
material orientation and mechanical properties. This, the so called Orthotropic Linear Strain Tensor 
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(OLST), is also used to derive a first order rotation tensor that gives change in material principal 
direction rather than geometric rigid body rotation. The problems of non-orthonormal basis vectors, 
following large shear deformation, for materials with inherent principal directionality are avoided by the 
use of persistently orthotropic material coordinate systems. These concepts are used to reformulate 
the necessary parts for a 2D analysis using the proposed strain tensors and transformation matrices. 

The paper is organised as follows: In section 2, notation and the conventional linear strain tensor is 
presented. Following this, key concepts and techniques relating to the proposed theory are introduced. 
This is used, in the section that follows, for a numerical example demonstrating the benefits of the 
proposed concepts. The final section draws conclusions regarding the work presented.  

2 The linear tensors of the displacement state 

The strain tensor e is referred to as the Isotropic Linear Strain Tensor (ILST), in planar form this is: 

       
TT

11 22 12 ,
m g

xx yy xye e e e e e e e  (1) 

When numeric indices are used, the values are in the local material coordinate system m, and when 
Roman minuscule letters are used, the values are in any arbitrary global coordinate system g. Using 

the displacement gradient u, the linear strain tensor field can be expressed as 

   , ,2, 2ij i j j ie u u     e u u
 

 (2) 

with components shown in index notation, and noting that commas between indices infer the spatial 
derivative.  If we remove the assumption of symmetry, whereby 

1212 2121, ,yx xye e D D   (3) 

then the knowledge of the strain state is reduced to: 

, , .ij ji i j j ie e u u    (4) 

By considering the linear strain tensor is actually the symmetric part of the displacement gradient, 

the residual tensor, rigid body rotation , is given by the skew symmetric component: 

 , , 2i j j i i ju u     (5) 

where the use of the cross product in the indices is such that i j k   . 

3 Continuum mechanics using the strongly orthotropic postulate 

3.1 Derivation of the orthotropic linear strain tensor 

In order to derive the OLST field, we first define the vectorized tensor, differing from (1): the ILST in 
Voigt notation. Because an orthotropic linear strain tensor with values unique to the ILST is to be 

defined, the denotation œ is used rather than e: 
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where (4) now applies such that , ,ij ji i j j iœ œ u u   . Based on the postulation, the proposed strain 

tensor is, unlike the ILST, dependent on the material property set including the fourth-order elasticity 

tensor, D, and the angle to the material principal direction, : 

        , ,
g g m g

f œ u D   (7) 

We omit the simplification whereby shear strains are assumed equal, as in the ILST and (3), and 
therefore the planar elasticity tensor takes the form: 
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Adhering to the well known form, stress and the orthotropic strain tensor are related by the fourth 
order tensor of Eq (8) and similarly in any global coordinate frame, whereby the global stiffness matrix 
should be a function of the material local stiffness matrix: 

              œ œ, ,
m m m g g m g
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The required global strain and stress matrices are given by: 

       œ œ,
g m g m

 œ T œ T   (10) 

using the transformation matrix T, derived using the transformation law œij’ = lipljqœpq; noting the 
Einstein summation convention for free indices, and the direction cosines lij. The required material 
matrix in the global coordinate system, adopting potential shear coupling terms, is found using 
   1g mD T DT . The subsequent global model of (9) is thus defined by ten unique functions: 
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Notably, these functions reduce to conventional transformations if the omitted condition (3) is included. 

The stress tensor in the global coordinate system must maintain the in-plane moment equilibrium 

implied by the ILST; thus in shear œ œ

xy yx  . The assembly of this equality with (11) and the condition 

equivalent to (4) define the first shear strain term: 
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Note that the second shear strain term is found by an identical process. By substitution of the 
transformation functions, the proposed orthotropic strain tensor field can be explicitly expressed for the 
two-dimensional case, which is written compactly by:  
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where we define the balance ratio as:   3,ij ijij ijij jijid D D D D m     and where ij refers to the 

projected component of the fibre angle in the plane of measurement indicated such that ij  = ij. As a 
demonstration of the universal applicability of the formulation, we see that under the hitherto omitted 

equality of (3), (13) easily reduces to , ,( ) 2xy x y y xœ u u  ; which is identical to the ILST as shown in (2). 

Based on the same relationship between (2) and (5), the proposed material principal rotation 
tensor can similarly be found from (13): 
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Note that all generalised tensor and indicial forms are applicable to the three dimensional case 
providing the material coordinate system is only rotated in one plane.  



 

 

3.2 The Extended Mohr’s Plot for the orthotropic strain tensor 

Considering the proposed tensors in (13) and (14), we introduce a metric for their aspectual strain  to 

describe the latter part of the formula. This has components: ij = (ui,i−uj,j)/2 which produce a positive 
value when the aspect ratio increases, a negative value for a decrease, and no change for pure planar 
dilatation strain. At 45° to the maximum shear orientation, where the shear component diminishes to 
zero, pure aspectual strain represents deviatoric change only. 
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Figure 1. Characteristic strain indicators of the proposed extended Mohr's plot, unbound from the horizontal axis 

In Figure 1 an example of the proposed Extended Mohr’s Plot is shown for the trellis motion of an 

infinitely orthotropic material with a fibre angle of xy = 0, where  dxy = 1 such that œyx = 0. As with a 

conventional Mohr’s plot for strain, f represents the angle between the measured global coordinate 
system and the horizontal orthonormal principal axis. The strain plot, no longer bound to the horizontal 
axis except when isotropic, illustrates the necessity for aspectual strain. Here, vertical deviation from 
the tensile-compressive axis conveys the level of material orthotropy and in the same manner that the 
horizontal position of the circle centre indicates the state of dilatation strain, the vertical position is 
indicative of the maximum aspectual strain. Note that the horizontal skew plane increases with the 
upwards shear axis xy, and that vertical skew increases with the downwards shear axis yx. 

An Eigen decomposition of the strain tensor yields eigenvalues 1, 2, 3, which represent the strain 
values for each principal orientation, and eigenvectors [v1, v2, v3]

T, which indicate the non-orthonormal 
principal axis. As a result, there no longer exists an orthogonal principal plane for any deviatoric stress 
state for the case of orthotropy. If infinitely orthotropic as in Figure 1, the absence of a Cartesian 
principal coordinate system is logically sound. Note that the conventional orthonormal principal values 

can be recovered by degeneration the OLST into the ILST by:   Teig 2 .    v œ œ  

3.3 The material stiffness matrix under strong orthotropy 

The linear constitutive equation œ

ij ijkl klœ S   utilises a generalised orthotropic compliance tensor, 

subsequent to the presented theory, having unique horizontal/vertical shear moduli 
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where, the Poisson’s ratio is ij ii jjœ œ   , and ij is the Kronecker delta. For the plane stress 

condition the expanded nine-by-nine compliance tensor is truncated to give the required in-plane 
terms. This reduced matrix is inverted to yield the plane stress material stiffness matrix, D, such that 
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For equivalence between the ILST and OLST, e

12  must equal œ

12 , where ()
e
 refers to the isotropic 

system representation, the conventional shear stiffness is found using the contraction rule: 

 1212 1212 2121 1212 21212D D D D D   (17)  



 

 

4 Numerical examples 

4.1 Case study: Orthotropic trellis shear within a quasi corotational framework 

A strongly orthotropic square element under a trellis-type deformation was used to demonstrate the 
effectiveness of the proposed tensors. This used a principal elastic modulus of 180 GPa, an 
orthogonal transverse modulus of one thousandth of this value, and a major Poisson’s ratio of 0.4999. 
Its response is according to the constitutive model in (16) and related contraction by (17). 
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Figure 2. Effective treatment of an infinitely orthotropic material under trellis shear and plane stress 

A benchmark analytical model was used, with the effective modality of Figure 2, which demonstrates a 

trellis motion whereupon side lengths remain constant. With displacement  as a controlled input, the 
interior angle, and internal strains are kinematically determinate [5].  

     1 1
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The NASTRAN code SOL101 was used to ascertain the second solution; although susceptible to 
second order rigid rotation, the example problem had no such geometric rotation. Using nonlinear 
geometry in the ANSYS code, the third solution was indifferent to rigid body rotation, including second 
order components, by way of Polar Decomposition: where the deformation gradient tensor F is 
decomposed into a rotation tensor R and the left stretch tensor U such that it satisfies: F RU , where 

  F u I


. The nonlinear solver Marc was used to perform the fourth solution using the small strain 

and total Lagrangian formulation. Finally, the proposed OLST was used for an evaluation solution. As 
with the other iterative solvers, the linear first run returned an overly stiff solution, but also returned the 
distinct material principal rotation tensor. A subsequent run, n+1, used a simple implementation of co-

rotation represented by T

1n n X QX , where each fibre family was counter-rotated by a matrix Q using 

the angular value z. A similar process was repeated to recalculate the boundary displacements.  

4.2 Results summary 

Table 1. Comparison of solutions to a 1% trellis deformation of a simple square element under plane stress 

Model 
Strain (%) 

 
Stress (MPa) 

x y xy yx x y xy 

Analytical 0 −2.020E−2 1.005 NA  −1.818E−2 −3.637E−2 3.611 
NASTRAN SOL101 −5.051E−3 −5.051E−3 1.005 NA  −9.098 −1.364E−2 3.611 
ANSYS NLGeom −2.020E−2 →0 1.005 NA  −3.637E+1 −1.818E−2 3.611 
Marc Total Lagr. →0 →0 1.005 NA  →0 →0 3.611 
Proposed OLST −4.543E−8 −2.014E−2 2.007 3.009E−2  −1.821E−2 −3.626E−2 3.611 
 

The results in Table 1 show the solutions from five possible procedures. In normal strain, whilst the 
error associated with the infinitely orthotropic analytical model is small, the entire planar compaction is 
directed to the fibre-normal axis. Meanwhile, the solution of NASTRAN is clearly incorrect as the result 
disregards material properties and hence does not model the deformation mode required for fibre 
inextensibility. The ANSYS solution, whilst rotationally insensitive, has a rotational basis measured 
against an arbitrary element edge or coordinate; thus it can be classified as being mesh dependent. In 
the Marc solution, by using material principal stretches, which after shearing are no longer orthogonal, 
the fibre inextensibility is reflected in the normal stresses producing a free shearing result. Critically 
though, the second-order fibre-normal compaction can no longer be seen in normal strain. Overall 
none of these conventional methods can reproduce the performance of the analytical model; and 



 

 

furthermore, that model is shown to be an approximation in comparison to the full implementation of 
the OLST with co-rotation. This final result, considered exact, identifies the fibre near-inextensibility, 
fibre-normal compaction, and the balance between these resulting from the finite orthotropic ratio. 

The normal stress components of the analytical and proposed approaches indicate the small 
difference between an exact treatment and the approximated infinitely orthotropic treatment. The 
linear static solution shows a two to three order-of-magnitude locking in the fibre direction, while the 
ANSYS solution performed worse again. The normal stresses for Marc, approaching zero subject to 
numerical procedure (indicated by →0), were many orders of magnitude smaller than the correct 
values. Whilst being the best of the conventional solvers, it was clearly inferior to the proposed theory. 

In shear strain, the results show all procedures produced the same total shear strain; however, clearly 
the presented theory is more informative in identifying the balance between the planar shear values. 
The distribution between these is approximately representative of the orthotropic ratio. In the results 
for shear stress, all values are equal, which suggests the proposed distribution of strains by the OLST 
is correct when used in comparison to a conventional shear modulus determined using (17). Overall, 
the proposed continuum mechanics approach provides the only solution with both a free-shearing 
response and the second order component due to fibre-normal compaction for any level of orthotropy. 

5 Conclusions 

A continuum mechanics theory that proposes a more informative and mechanistic metric of strain 
modes for strongly orthotropic materials has been presented. This is achieved through use of a 
material-property dependent and asymmetric strain tensor, and by the subsequently derived material 
principal rotation tensor. The theory has the capability to model the persistently orthotropic behaviour 
of all levels of orthotropy, and also reduces to conventional results when applied to isotropic materials. 
As a demonstration of the utility of the approach, a quasi-linear analysis of a trellis shear test was 
performed using various commercial codes to show the erroneous behaviour under finite shear 
deformation. These were compared to an analytical method based on the strongly orthotropic 
postulate and an implementation of the presented continuum mechanics solution. The results show 
the ability of the proposed approach to arrive at a solution more accurate as compared to the 
analytical or commercial solvers – and thus to be insusceptible to instances of erroneous response. 

This work is a basis for continuing research aiming to create the theory and framework for the 
accurate prediction of forming of advanced composite materials. Further development requires the 
extension of this theory into a finite element formulation for plate and shell elements. This will require a 
more rigorous treatment in the nonlinear fields and the subsequent associated numerical methods. 
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