113 research outputs found

    Enhanced heat transport by turbulent two-phase Rayleigh-B\'enard convection

    Full text link
    We report measurements of turbulent heat-transport in samples of ethane (C2_2H6_6) heated from below while the applied temperature difference ΔT\Delta T straddled the liquid-vapor co-existance curve Tϕ(P)T_\phi(P). When the sample top temperature TtT_t decreased below TϕT_\phi, droplet condensation occurred and the latent heat of vaporization HH provided an additional heat-transport mechanism.The effective conductivity λeff\lambda_{eff} increased linearly with decreasing TtT_t, and reached a maximum value λeff\lambda_{eff}^* that was an order of magnitude larger than the single-phase λeff\lambda_{eff}. As PP approached the critical pressure, λeff\lambda_{eff}^* increased dramatically even though HH vanished. We attribute this phenomenon to an enhanced droplet-nucleation rate as the critical point is approached.Comment: 4 gages, 6 figure

    Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point

    Get PDF
    As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature dependences of the kinematic viscosity and the thermal diffusion coefficient. If the working fluid is ethane close to the critical point the origin of non-Oberbeck-Boussinesq corrections is very different, as will be shown in the present paper. Namely, the main origin of NOB corrections then lies in the strong temperature dependence of the isobaric thermal expansion coefficient \beta(T). More precisely, it is the nonlinear T-dependence of the density \rho(T) in the buoyancy force which causes another type of NOB effect. We demonstrate that through a combination of experimental, numerical, and theoretical work, the latter in the framework of the extended Prandtl-Blasius boundary layer theory developed in Ahlers et al., J. Fluid Mech. 569, p.409 (2006). The latter comes to its limits, if the temperature dependence of the thermal expension coefficient \beta(T) is significant.Comment: 18 pages, 15 figures, 3 table

    Heat transport by turbulent Rayleigh-B\'enard convection for $\Pra\ \simeq 0.8and and 3\times 10^{12} \alt \Ra\ \alt 10^{15}:Aspectratio: Aspect ratio \Gamma = 0.50$

    Full text link
    We report experimental results for heat-transport measurements, in the form of the Nusselt number \Nu, by turbulent Rayleigh-B\'enard convection in a cylindrical sample of aspect ratio ΓD/L=0.50\Gamma \equiv D/L = 0.50 (D=1.12D = 1.12 m is the diameter and L=2.24L = 2.24 m the height). The measurements were made using sulfur hexafluoride at pressures up to 19 bars as the fluid. They are for the Rayleigh-number range 3\times 10^{12} \alt \Ra \alt 10^{15} and for Prandtl numbers \Pra\ between 0.79 and 0.86. For \Ra < \Ra^*_1 \simeq 1.4\times 10^{13} we find \Nu = N_0 \Ra^{\gamma_{eff}} with γeff=0.312±0.002\gamma_{eff} = 0.312 \pm 0.002, consistent with classical turbulent Rayleigh-B\'enard convection in a system with laminar boundary layers below the top and above the bottom plate. For \Ra^*_1 < \Ra < \Ra^*_2 (with \Ra^*_2 \simeq 5\times 10^{14}) γeff\gamma_{eff} gradually increases up to 0.37±0.010.37\pm 0.01. We argue that above \Ra^*_2 the system is in the ultimate state of convection where the boundary layers, both thermal and kinetic, are also turbulent. Several previous measurements for Γ=0.50\Gamma = 0.50 are re-examined and compared with the present results.Comment: 44 pages, 18 figures, submitted to NJ

    Large scale dynamics in turbulent Rayleigh-Benard convection

    Get PDF
    The progress in our understanding of several aspects of turbulent Rayleigh-Benard convection is reviewed. The focus is on the question of how the Nusselt number and the Reynolds number depend on the Rayleigh number Ra and the Prandtl number Pr, and on how the thicknesses of the thermal and the kinetic boundary layers scale with Ra and Pr. Non-Oberbeck-Boussinesq effects and the dynamics of the large-scale convection-roll are addressed as well. The review ends with a list of challenges for future research on the turbulent Rayleigh-Benard system.Comment: Review article, 34 pages, 13 figures, Rev. Mod. Phys. 81, in press (2009

    Oligodendrocytes Do Not Export NAA-Derived Aspartate In Vitro.

    Get PDF
    Oligodendroglial cells are known to de-acetylate the N-acetylaspartate (NAA) synthesized and released by neurons and use it for lipid synthesis. However, the role of NAA regarding their intermediary metabolism remains poorly understood. Two hypotheses were proposed regarding the fate of aspartate after being released by de-acetylation: (1) aspartate is metabolized in the mitochondria of oligodendrocyte lineage cells; (2) aspartate is released to the medium. We report here that aspartoacylase mRNA expression increases when primary rat oligodendrocyte progenitor cells (OPCs) differentiate into mature cells in culture. Moreover, characterising metabolic functions of acetyl coenzyme A and aspartate from NAA catabolism in mature oligodendrocyte cultures after 5 days using isotope-labelled glucose after 5-days of differentiation we found evidence of extensive NAA metabolism. Incubation with [1,6-13C]glucose followed by gas chromatography-mass spectrometry and high performance liquid chromatography analyses of cell extracts and media in the presence and absence of NAA established that the acetate moiety produced by hydrolysis of NAA does not enter mitochondrial metabolism in the form of acetyl coenzyme A. We also resolved the controversy concerning the possible release of aspartate to the medium: aspartate is not released to the medium by oligodendrocytes in amounts detectable by our methods. Therefore we propose that: aspartate released from NAA joins the cytosolic aspartate pool rapidly and takes part in the malate-aspartate shuttle, which transports reducing equivalents from glycolysis into the mitochondria for ATP production and enters the tricarboxylic acid cycle at a slow rate.This work was supported by grants from the UK Multiple Sclerosis Society and from Qatar Foundation. The work was further supported by core funding from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. The authors acknowledge the excellent technical support in GC-MS and HPLC analysis from Lars Evje (NTNU, Norway).This is the final version of the article. It first appeared from Springer at http://dx.doi.org/10.1007/s11064-016-1985-y

    The CCR4-NOT Complex Physically and Functionally Interacts with TRAMP and the Nuclear Exosome

    Get PDF
    BACKGROUND: Ccr4-Not is a highly conserved multi-protein complex consisting in yeast of 9 subunits, including Not5 and the major yeast deadenylase Ccr4. It has been connected functionally in the nucleus to transcription by RNA polymerase II and in the cytoplasm to mRNA degradation. However, there has been no evidence so far that this complex is important for RNA degradation in the nucleus. METHODOLOGY/PRINCIPAL FINDINGS: In this work we point to a new role for the Ccr4-Not complex in nuclear RNA metabolism. We determine the importance of the Ccr4-Not complex for the levels of non-coding nuclear RNAs, such as mis-processed and polyadenylated snoRNAs, whose turnover depends upon the nuclear exosome and TRAMP. Consistently, mutation of both the Ccr4-Not complex and the nuclear exosome results in synthetic slow growth phenotypes. We demonstrate physical interactions between the Ccr4-Not complex and the exosome. First, Not5 co-purifies with the exosome. Second, several exosome subunits co-purify with the Ccr4-Not complex. Third, the Ccr4-Not complex is important for the integrity of large exosome-containing complexes. Finally, we reveal a connection between the Ccr4-Not complex and TRAMP through the association of the Mtr4 helicase with the Ccr4-Not complex and the importance of specific subunits of Ccr4-Not for the association of Mtr4 with the nuclear exosome subunit Rrp6. CONCLUSIONS/SIGNIFICANCE: We propose a model in which the Ccr4-Not complex may provide a platform contributing to dynamic interactions between the nuclear exosome and its co-factor TRAMP. Our findings connect for the first time the different players involved in nuclear and cytoplasmic RNA degradation
    corecore