5,480 research outputs found

    Technique for calibrating angular measurement devices when calibration standards are unavailable

    Get PDF
    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined

    Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    Get PDF
    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment

    Development of and flight results from the Space Acceleration Measurement System (SAMS)

    Get PDF
    Described here is the development of and the flight results from the Space Acceleration Measurement System (SAMS) flight units used in the Orbiter middeck, Spacelab module, and the Orbitercargo bay. The SAMS units are general purpose microgravity accelerometers designed to support a variety of science experiments with microgravity acceleration measurements. A total of six flight units have been fabricated; four for use in the Orbiter middeck and Spacelab module, and two for use in the Orbiter cargo bay. The design of the units is briefly described. The initial two flights of SAMS units on STS-40 (June 1991) and STS-43 (August 1991) resulted in 371 megabytes and 2.6 gigabytes of data respectively. Analytical techniques developed to examine this quantity of acceleration data are described and sample plots of analyzed data are illustrated. Future missions for the SAMS units are listed

    GIS Tools for Hydrology and Hydraulics

    Get PDF
    GIS information sources used by the Office of Hydraulics to improve the accuracy and efficiency hydrologic computations will be presented. A variety of information sources will be discussed with an emphasis on DEM data obtained from Indiana\u27s recent state-wide mapping initiative. Sources and limitations of the data will be discussed, and techniques for utilizing this data will be introduced

    Angle of attack system

    Get PDF
    The development of systems for measuring model pitch and roll attitude in the National Transonic Facility (NTF) is discussed. The effort is divided between two approaches: (1) an inertial measurement that is an extrapolation of existing technology into a cryogenic environment, and (2) an optical technique based on a holographic angle sensor

    Space acceleration measurement system triaxial sensor head error budget

    Get PDF
    The objective of the Space Acceleration Measurement System (SAMS) is to measure and record the microgravity environment for a given experiment aboard the Space Shuttle. To accomplish this, SAMS uses remote triaxial sensor heads (TSH) that can be mounted directly on or near an experiment. The errors of the TSH are reduced by calibrating it before and after each flight. The associated error budget for the calibration procedure is discussed here

    X-Ray Spectral Variability of Extreme BL Lac AGN H1426+428

    Get PDF
    Between 7 March 2002 and 15 June 2002, intensive X-ray observations were carried out on the extreme BL Lac object H1426+428 with instruments on board the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements of H1426+428 in the crucial energy range that characterizes the first peak of its spectral energy distribution. This peak, which is almost certainly due to synchrotron emission, has previously been inferred to be in excess of 100 keV. By taking frequent observations over a four-month campaign, which included \sim450 ksec of RXTE time, studies of flux and spectral variability on multiple timescales were performed, along with studies of spectral hysteresis. The 3-24 keV X-ray flux and spectra exhibited significant variability, implying variability in the location of the first peak of the spectral energy distribution. Hysteresis patterns were observed, and their characteristics have been discussed within the context of emission models.Comment: accepted for publication in Astrophysical Journa
    corecore