1,008 research outputs found

    A simplified protocol for detecting two systemic bait markers (Rhodamine B and iophenoxic acid) in small mammals

    Get PDF
    We developed a method of quantifying levels of fluorescence in the whiskers of wild stoats (Mustela erminea) using fluorescence microscopy and Axiovision 3.0.6.1 software. The method allows for discrimination between natural fluorescence present in or on a whisker, and the fluorescence resulting from the ingestion of the systemic marker Rhodamine B (RB), although some visual judgement is still required. We also developed a new high performance liquid chromatography (HPLC) protocol for detecting the systemic marker iophenoxic acid (IPA) in the blood of laboratory rats (Rattus norvegicus) and wild stoats. With this method, the blood of an animal that has consumed IPA can be tested for the presence of the foreign IPA compound itself. This is a more reliable test than the previous method, which measured the raised level of natural blood protein-bound iodine correlated with IPA absorption. The quantity of blood required from animal subjects is very small (10 ÎŒl), so the testing is less intrusive and the method can be extended to smaller species. The extraction technique uses methanol, rather than acids and heavy metal salts, thereby simplifying the procedure. Recovery of IPA is quantitative, giving a highly reliable reading. In experiments on captive rats the IPA method proved successful. Of 12 positively marked carcasses, two that had not been frozen for the 24 h before blood samples were taken showed relatively lower IPA levels. The same IPA detection method, as well as the whisker analysis for RB, was applied successfully to a population of wild stoats to which both Rhodamine B and IPA were made available at bait stations. The presence of both bait markers was detectable in rats for at least 21 days and in stoats for at least 27 days

    Selective Reflection Spectroscopy at the Interface between a Calcium Fluoride Window and Cs Vapour

    Full text link
    A special vapour cell has been built, that allows the measurement of the atom-surface van der Waals interaction exerted by a CaF2 window at the interface with Cs vapour. Mechanical and thermal fragility of fluoride windows make common designs of vapour cells unpractical, so that we have developed an all-sapphire sealed cell with an internal CaF2 window. Although impurities were accidentally introduced when filling-up the prototype cell, leading to a line-broadening and shift, the selective reflection spectrum on the Cs D1 line (894 nm) makes apparent the weak van der Waals surface interaction. The uncertainties introduced by the effects of these impurities in the van der Waals measurement are nearly eliminated when comparing the selective reflection signal at the CaF2 interface of interest, and at a sapphire window of the same cell. The ratio of the interaction respectively exerted by a sapphire interface and a CaF2 interface is found to be 0.55 ±\pm 0.25, in good agreement with the theoretical evaluation of ~0.67.Comment: soumis \`a Appl Phys B MS 4734

    Saturation effects in the sub-Doppler spectroscopy of Cesium vapor confined in an Extremely Thin Cell

    Full text link
    Saturation effects affecting absorption and fluorescence spectra of an atomic vapor confined in an Extremely Thin Cell (cell thickness L<1ΌmL < 1 \mu m) are investigated experimentally and theoretically. The study is performed on the D2D_{2} line (λ = 852nm)\lambda ~= ~852 nm) of CsCs and concentrates on the two situations L=λ/2L = \lambda /2 and L=λL =\lambda, the most contrasted ones with respect to the length dependence of the coherent Dicke narrowing. For L=λ/2L = \lambda /2, the Dicke-narrowed absorption profile simply broadens and saturates in amplitude when increasing the light intensity, while for L=λL =\lambda, sub-Doppler dips of reduced absorption at line-center appear on the broad absorption profile. For a fluorescence detection at L=λL =\lambda, saturation induces narrow dips, but only for hyperfine components undergoing a population loss through optical pumping. These experimental results are interpreted with the help of the various existing models, and are compared with numerical calculations based upon a two-level modelling that considers both a closed and an open system.Comment: 11 pages, 12 figure

    Selective Reflection Spectroscopy on the UV Third Resonance Line of Cs : Simultaneous Probing of a van der Waals Atom-Surface Interaction Sensitive to Far IR Couplings and of Interatomic Collisions

    Get PDF
    We report on the analysis of FM selective reflection experiments on the 6S1/2->8P3/2 transition of Cs at 388 nm, and on the measurement of the surface van der Waals interaction exerted by a sapphire interface on Cs(8P3/2). Various improvements in the systematic fitting of the experiments have permitted to supersede the major difficulty of a severe overlap of the hyperfine components, originating on the one hand in a relatively small natural structure, and on the other hand on a large pressure broadening imposed by the high atomic density needed for the observation of selective reflection on a weak transition. The strength of the van der Waals surface interaction is evaluated to be 73±\pm10 kHz.Ό\mum3. An evaluation of the pressure shift of the transition is also provided as a by-product of the measurement. We finally discuss the significance of an apparent disagreement between the experimental measurement of the surface interaction, and the theoretical value calculated for an electromagnetic vacuum at a null temperature. The possible influence of the thermal excitation of the surface is evoked, because, the dominant contributions to the vW interaction for Cs(8P3/2) lie in the far infrared range.Comment: submitted to Laser Physics - issue in the memory of Herbert Walther

    The niche of One Health approaches in Lassa fever surveillance and control

    Get PDF
    Lassa fever (LF), a zoonotic illness, represents a public health burden in West African countries where the Lassa virus (LASV) circulates among rodents. Human exposure hinges significantly on LASV ecology, which is in turn shaped by various parameters such as weather seasonality and even virus and rodent-host genetics. Furthermore, human behaviour, despite playing a key role in the zoonotic nature of the disease, critically affects either the spread or control of human-to-human transmission. Previous estimations on LF burden date from the 80s and it is unclear how the population expansion and the improvement on diagnostics and surveillance methods have affected such predictions. Although recent data have contributed to the awareness of epidemics, the real impact of LF in West African communities will only be possible with the intensification of interdisciplinary efforts in research and public health approaches. This review discusses the causes and consequences of LF from a One Health perspective, and how the application of this concept can improve the surveillance and control of this disease in West Africa

    Setting limits on Effective Field Theories: the case of Dark Matter

    Full text link
    The usage of Effective Field Theories (EFT) for LHC new physics searches is receiving increasing attention. It is thus important to clarify all the aspects related with the applicability of the EFT formalism in the LHC environment, where the large available energy can produce reactions that overcome the maximal range of validity, i.e. the cutoff, of the theory. We show that this does forbid to set rigorous limits on the EFT parameter space through a modified version of the ordinary binned likelihood hypothesis test, which we design and validate. Our limit-setting strategy can be carried on in its full-fledged form by the LHC experimental collaborations, or performed externally to the collaborations, through the Simplified Likelihood approach, by relying on certain approximations. We apply it to the recent CMS mono-jet analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a case study because the limited reach on the DM production EFT Wilson coefficient and the structure of the theory suggests that the cutoff might be dangerously low, well within the LHC reach. However our strategy can also be applied to EFT's parametrising the indirect effects of heavy new physics in the Electroweak and Higgs sectors

    Exploring the van der Waals Atom-Surface attraction in the nanometric range

    Get PDF
    The van der Waals atom-surface attraction, scaling as C3 z-3 for z the atom-surface distance, is expected to be valid in the distance range 1-1000 nm, covering 8-10 orders of magnitudes in the interaction energy. A Cs vapour nanocell allows us to analyze the spectroscopic modifications induced by the atom-surface attraction on the 6P3/2->6D5/2 transition. The measured C3 value is found to be independent of the thickness in the explored range 40-130 nm, and is in agreement with an elementary theoretical prediction. We also discuss the specific interest of exploring short distances and large interaction energy.Comment: to appear in Europhysics Letter

    High contrast D1_{1} line electromagnetically induced transparency in nanometric-thin rubidium vapor cell

    Full text link
    Electromagnetically induced transparency (EIT) on atomic D1_{1} line of rubidium is studied using a nanometric-thin cell with atomic vapor column length in the range of L= 400 - 800 nm. It is shown that the reduction of the cell thickness by 4 orders as compared with an ordinary cm-size cell still allows to form an EIT resonance for L=λL= \lambda (λ=794\lambda =794 nm) with the contrast of up to 40%. Remarkable distinctions of EIT formation in nanometric-thin and ordinary cells are demonstrated. Despite the Dicke effect of strong spectral narrowing and increase of the absorption for L=L= λ/2\lambda /2, EIT resonance is observed both in the absorption and the fluorescence spectra for relatively low intensity of the coupling laser. Well resolved splitting of the EIT resonance in moderate magnetic field for L=L= λ\lambda can be used for magnetometry with nanometric spatial resolution. The presented theoretical model well describes the observed results.Comment: Submitted to Applied Physics B: Lasers and Optics, 9 pages, 10 figure

    Towards surface quantum optics with Bose-Einstein condensates in evanescent waves

    Full text link
    We present a surface trap which allows for studying the coherent interaction of ultracold atoms with evanescent waves. The trap combines a magnetic Joffe trap with a repulsive evanescent dipole potential. The position of the magnetic trap can be controlled with high precision which makes it possible to move ultracold atoms to the surface of a glass prism in a controlled way. The optical potential of the evanescent wave compensates for the strong attractive van der Waals forces and generates a potential barrier at only a few hundred nanometers from the surface. The trap is tested with Rb Bose-Einstein condensates (BEC), which are stably positioned at distances from the surfaces below one micrometer
    • 

    corecore