44,596 research outputs found

    Coherent transport in Nb/delta-doped-GaAs hybrid microstructures

    Full text link
    Coherent transport in Nb/GaAs superconductor-semiconductor microstructures is presented. The structures fabrication procedure is based on delta-doped layers grown by molecular-beam-epitaxy near the GaAs surface, followed by an As cap layer to protect the active semiconductor layers during ex situ transfer. The superconductor is then sputter deposited in situ after thermal desorption of the protective layer. Two types of structures in particular will be discussed, i.e., a reference junction and the engineered one that contains an additional insulating AlGaAs barrier inserted during the growth in the semiconductor. This latter configuration may give rise to controlled interference effects and realizes the model introduced by de Gennes and Saint-James in 1963. While both structures show reflectionless tunneling-dominated transport, only the engineered junction shows additionally a low-temperature single marked resonance peaks superimposed to the characteristic Andreev-dominated subgap conductance. The analysis of coherent magnetotransport in both microstructures is successfully performed within the random matrix theory of Andreev transport and ballistic effects are included by directly solving the Bogoliubov-de Gennes equations. The impact of junction morphology on reflectionless tunneling and the application of the employed fabrication technique to the realization of complex semiconductor-superconductor systems are furthermore discussed.Comment: 9 pages, 8 figures, invited review paper, to be published in Mod. Phys. Lett.

    Melt-growth dynamics in CdTe crystals

    Full text link
    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt-growth dynamics and fine-scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt →\rightarrow crystal transformation. Here we demonstrate successful molecular dynamics simulations of melt-growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during the melt-growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical method

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    Elliptic Flow from a Transversally Thermalized Fireball

    Full text link
    The agreement of elliptic flow data at RHIC at central rapidity with the hydrodynamic model has led to the conclusion of very rapid thermalization. This conclusion is based on the intuitive argument that hydrodynamics, which assumes instantaneous local thermalization, produces the largest possible elliptic flow values and that the data seem to saturate this limit. We here investigate the question whether incompletely thermalized viscous systems may actually produce more elliptic flow than ideal hydrodynamics. Motivated by the extremely fast primordial longitudinal expansion of the reaction zone, we investigate a toy model which exhibits thermalization only in the transverse directions but undergoes collisionless free-streaming expansion in the longitudinal direction. For collisions at RHIC energies, elliptic flow results from the model are compared with those from hydrodynamics. With the final particle yield and \kt-distribution fixed, the transversally thermalized model is shown not to be able to produce the measured amount of elliptic flow. This investigation provides further support for very rapid local kinetic equilibration at RHIC. It also yields interesting novel results for the elliptic flow of massless particles such as direct photons.Comment: revtex4, 15 pages + 10 embedded EPS figure

    Non-equilibrium chemistry and dust formation in AGB stars as probed by SiO line emission

    Full text link
    We have performed high spatial resolution observations of SiO line emission for a sample of 11 AGB stars using the ATCA, VLA and SMA interferometers. Detailed radiative transfer modelling suggests that there are steep chemical gradients of SiO in their circumstellar envelopes. The emerging picture is one where the radial SiO abundance distribution starts at an initial high abundance, in the case of M-stars consistent with LTE chemistry, that drastically decreases at a radius of ~1E15 cm. This is consistent with a scenario where SiO freezes out onto dust grains. The region of the wind with low abundance is much more extended, typically ~1E16 cm, and limited by photodissociation. The surpisingly high SiO abundances found in carbon stars requires non-equilibrium chemical processes.Comment: 2 pages, 1 figure. To be published in the proceedings of the conference "Why Galaxies Care about AGB Stars", held in Vienna, August 7-11, 2006; F. Kerschbaum, C. Charbonnel, B. Wing eds, ASP Conf.Ser. in pres

    Topo-Geometric Filtration Scheme for Geometric Active Contours and Level Sets: Application to Cerebrovascular Segmentation

    Get PDF
    One of the main problems of the existing methods for the segmentation of cerebral vasculature is the appearance in the segmentation result of wrong topological artefacts such as the kissing vessels. In this paper, a new approach for the detection and correction of such errors is presented. The proposed technique combines robust topological information given by Persistent Homology with complementary geometrical information of the vascular tree. The method was evaluated on 20 images depicting cerebral arteries. Detection and correction success rates were 81.80% and 68.77%, respectively

    Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

    Full text link
    We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are achieved. Saturation spectroscopy of coupled QDs is observed at 77K, highlighting the modified nanocrystal dynamics for quantum information processing.Comment: * new additional figures and text * 10 pages, 5 figure

    Current-Induced Spin Polarization in Gallium Nitride

    Full text link
    Electrically generated spin polarization is probed directly in bulk GaN using Kerr rotation spectroscopy. A series of n-type GaN epilayers are grown in the wurtzite phase both by molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) with a variety of doping densities chosen to broadly modulate the transverse spin lifetime, T2*. The spin polarization is characterized as a function of electrical excitation energy over a range of temperatures. Despite weak spin-orbit interactions in GaN, a current-induced spin polarization (CISP) is observed in the material at temperatures of up to 200 K.Comment: 16 pages, 3 figure
    • …
    corecore