1,371 research outputs found

    Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances

    Get PDF
    In this work, a sensitivity of the rate of relaxation of ground-state atomic coherences to magnetic-field inhomogeneities is studied. Such coherences give rise to many interesting phenomena in light-atom interactions, and their lifetimes are a limiting factor for achieving better sensitivity, resolution or contrast in many applications. For atoms contained in a vapor cell, some of the coherence-relaxation mechanisms are related to magnetic-field inhomogeneities. We present a simple model describing relaxation due to such inhomogeneities in a buffer-gas-free anti-relaxation coated cell. A relation is given between relaxation rate and magnetic-field inhomogeneities including the dependence on cell size and atomic spices. Experimental results, which confirm predictions of the model, are presented. Different regimes, in which the relaxation rate is equally sensitive to the gradients in any direction and in which it is insensitive to gradients transverse to the bias magnetic field, are predicted and demonstrated experimentally.Comment: 6 pages, 4 figures, Submitted to Phys. Rev.

    AC Stark shift noise in QND measurement arising from quantum fluctuations of light polarization

    Full text link
    In a recent letter [Auzinsh {\it{et. al.}} (physics/0403097)] we have analyzed the noise properties of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement. Such a magnetometer measures spin precession of NN atomic spins by detecting optical rotation of far-detuned probe light. Here we consider maximally squeezed probe light, and carry out a detailed derivation of the contribution to the noise in a magnetometric measurement due to the differential AC Stark shift between Zeeman sublevels arising from quantum fluctuations of the probe polarization.Comment: This is a companion note to physics/040309

    Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?

    Full text link
    Noise properties of an idealized atomic magnetometer that utilizes spin squeezing induced by a continuous quantum nondemolition measurement are considered. Such a magnetometer measures spin precession of NN atomic spins by detecting optical rotation of far-detuned light. Fundamental noise sources include the quantum projection noise and the photon shot-noise. For measurement times much shorter than the spin-relaxation time observed in the absence of light (τrel\tau_{\rm rel}) divided by N\sqrt{N}, the optimal sensitivity of the magnetometer scales as N3/4N^{-3/4}, so an advantage over the usual sensitivity scaling as N1/2N^{-1/2} can be achieved. However, at longer measurement times, the optimized sensitivity scales as N1/2N^{-1/2}, as for a usual shot-noise limited magnetometer. If strongly squeezed probe light is used, the Heisenberg uncertainty limit may, in principle, be reached for very short measurement times. However, if the measurement time exceeds τrel/N\tau_{\rm rel}/N, the N1/2N^{-1/2} scaling is again restored.Comment: Some details of calculations can be found in a companion note: physics/040712

    Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry

    Full text link
    We report the use of an atomic magnetometer based on nonlinear magneto-optical rotation with frequency modulated light (FM NMOR) to detect nuclear magnetization of xenon gas. The magnetization of a spin-exchange-polarized xenon sample (1.71.7 cm3^3 at a pressure of 55 bar, natural isotopic abundance, polarization 1%), prepared remotely to the detection apparatus, is measured with an atomic sensor (which is insensitive to the leading field of 0.45 G applied to the sample; an independent bias field at the sensor is 140μ140 \muG). An average magnetic field of 10\sim 10 nG induced by the xenon sample on the 10-cm diameter atomic sensor is detected with signal-to-noise ratio 10\sim 10, limited by residual noise in the magnetic environment. The possibility of using modern atomic magnetometers as detectors of nuclear magnetic resonance and in magnetic resonance imaging is discussed. Atomic magnetometers appear to be ideally suited for emerging low-field and remote-detection magnetic resonance applications.Comment: 4 pages, 4 figure

    Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields

    Full text link
    Larmor precession of laser-polarized atoms contained in anti-relaxation-coated cells, detected via nonlinear magneto-optical rotation (NMOR) is a promising technique for a new generation of ultra-sensitive atomic magnetometers. For magnetic fields directed along the light propagation direction, resonances in NMOR appear when linearly polarized light is frequency- or amplitude-modulated at twice the Larmor frequency. Because the frequency of these resonances depends on the magnitude but not the direction of the field, they are useful for scalar magnetometry. New NMOR resonances at the Larmor frequency appear when the magnetic field is tilted away from the light propagation direction in the plane defined by the light propagation and polarization vectors. These new resonances, studied both experimentally and with a density matrix calculation in the present work, offer a convenient method for NMOR-based vector magnetometry.Comment: Submitted to Phys. Rev. A, 6 pages, 9 figure

    Production and detection of atomic hexadecapole at Earth's magnetic field

    Full text link
    Anisotropy of atomic states is characterized by population differences and coherences between Zeeman sublevels. It can be efficiently created and probed via resonant interactions with light, the technique which is at the heart of modern atomic clocks and magnetometers. Recently, nonlinear magneto-optical techniques have been developed for selective production and detection of higher polarization moments, hexadecapole and hexacontatetrapole, in the ground states of the alkali atoms. Extension of these techniques into the range of geomagnetic fields is important for practical applications. This is because hexadecapole polarization corresponding to the ΔM=4\Delta M=4 Zeeman coherence, with maximum possible ΔM\Delta M for electronic angular momentum J=1/2J=1/2 and nuclear spin I=3/2I=3/2, is insensitive to the nonlinear Zeeman effect (NLZ). This is of particular interest because NLZ normally leads to resonance splitting and systematic errors in atomic magnetometers. However, optical signals due to the hexadecapole moment decline sharply as a function of magnetic field. We report a novel method that allows selective creation of a macroscopic long-lived ground-state hexadecapole polarization. The immunity of the hexadecapole signal to NLZ is demonstrated with F=2 87^{87}Rb atoms at Earth's field.Comment: 4 pages, 5 figure

    Selective addressing of high-rank atomic polarization moments

    Get PDF
    We describe a method of selective generation and study of polarization moments of up to the highest rank κ=2F\kappa=2F possible for a quantum state with total angular momentum FF. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of 87^{87}Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure

    Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    Full text link
    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 1011G/Hz10^{-11} {\rm G/\sqrt{Hz}} for small (1μG\lesssim 1 {\rm \mu G}) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (500mG\sim 500 {\rm mG}), of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure
    corecore