20,989 research outputs found

    Preliminary Skylab MSS channel evaluation

    Get PDF
    The author has identified the following significant results. A set of 18 channels which were considered of usable quality were identified. These were channels 1-14, 17, 19-21. Channels 15, 16, 18, and 22 were dropped out because they were of poor quality; channels 7 and 11 were dropped to limit the total channel number to 16. From these 16 channels, a total of 22 signatures were obtained. Eight were developed from uniform blocks of the UMAP, and 14 from use of the DCLUS program. These signatures fell into six basic categories and classified more than 90% of the five scenes mapped: agriculture land (6 signatures); forest aland (4); water (2); open nonagriculture land (2); urban (6); and disturbed land (2)

    Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

    Full text link
    The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table

    Program to Optimize Simulated Trajectories (POST). Volume 1: Formulation manual

    Get PDF
    A general purpose FORTRAN program for simulating and optimizing point mass trajectories (POST) of aerospace vehicles is described. The equations and the numerical techniques used in the program are documented. Topics discussed include: coordinate systems, planet model, trajectory simulation, auxiliary calculations, and targeting and optimization

    Infection control at mass religious gatherings

    Get PDF

    A delta Scuti distance to the Large Magellanic Cloud

    Full text link
    We present results from a well studied delta Scuti star discovered in the LMC. The absolute magnitude of the variable was determined from the PL relation for Galactic delta Scuti stars and from the theoretical modeling of the observed B,V,I light curves. The two methods give distance moduli for the LMC of 18.46+-0.19 and 18.48+-0.15, respectively, for a consistent value of the stellar reddening of E(B-V)=0.08+-0.02. We have also analyzed 24 delta Scuti candidates discovered in the OGLE II survey of the LMC, and 7 variables identified in the open cluster LW 55 and in the galaxy disk by Kaluzny et al. (2003, 2006). We find that the LMC delta Scuti stars define a PL relation whose slope is very similar to that defined by the Galactic delta Scuti variables, and yield a distance modulus for the LMC of 18.50+-0.22 mag. We compare the results obtained from the delta Scuti variables with those derived from the LMC RR Lyrae stars and Cepheids. Within the observational uncertainties, the three groups of pulsating stars yield very similar distance moduli. These moduli are all consistent with the "long" astronomical distance scale for the Large Magellanic Cloud.Comment: Accepted for publication on A

    Ecological comparison of the risks of mother-to-child transmission and clinical manifestations of congenital toxoplasmosis according to prenatal treatment protocol

    Get PDF
    We compared the relative risks of mother-to-child transmission of Toxoplasma gondii and clinical manifestations due to congenital toxoplasmosis associated with intensive prenatal treatment in Lyon and Austria, short term treatment in 51% of Dutch women, and no treatment in Danish women. For each cohort, relative risks were standardized for gestation at seroconversion. In total, 856 mother–child pairs were studied: 549 in Lyon, 133 in Austria, 123 in Denmark and 51 in The Netherlands. The relative risk for mother-to-child transmission compared to Lyon was 1·24 (95% CI: 0·88, 1·59) in Austria; 0·59 (0·41, 0·81) in Denmark; and 0·65 (0·37, 1·01) in The Netherlands. Relative risks for clinical manifestations compared with Lyon (adjusted for follow-up to age 3 years) were: Austria 0·19 (0·04, 0·51); Denmark 0·60 (0·13, 1·08); and The Netherlands 1·46 (0·51, 2·72). There was no clear evidence that the risk of transmission or of clinical manifestations was lowest in centres with the most intensive prenatal treatment

    Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction

    Get PDF
    In the recent years, convolutional neural networks have transformed the field of medical image analysis due to their capacity to learn discriminative image features for a variety of classification and regression tasks. However, successfully learning these features requires a large amount of manually annotated data, which is expensive to acquire and limited by the available resources of expert image analysts. Therefore, unsupervised, weakly-supervised and self-supervised feature learning techniques receive a lot of attention, which aim to utilise the vast amount of available data, while at the same time avoid or substantially reduce the effort of manual annotation. In this paper, we propose a novel way for training a cardiac MR image segmentation network, in which features are learnt in a self-supervised manner by predicting anatomical positions. The anatomical positions serve as a supervisory signal and do not require extra manual annotation. We demonstrate that this seemingly simple task provides a strong signal for feature learning and with self-supervised learning, we achieve a high segmentation accuracy that is better than or comparable to a U-net trained from scratch, especially at a small data setting. When only five annotated subjects are available, the proposed method improves the mean Dice metric from 0.811 to 0.852 for short-axis image segmentation, compared to the baseline U-net

    Sliding mode control of quantum systems

    Full text link
    This paper proposes a new robust control method for quantum systems with uncertainties involving sliding mode control (SMC). Sliding mode control is a widely used approach in classical control theory and industrial applications. We show that SMC is also a useful method for robust control of quantum systems. In this paper, we define two specific classes of sliding modes (i.e., eigenstates and state subspaces) and propose two novel methods combining unitary control and periodic projective measurements for the design of quantum sliding mode control systems. Two examples including a two-level system and a three-level system are presented to demonstrate the proposed SMC method. One of main features of the proposed method is that the designed control laws can guarantee desired control performance in the presence of uncertainties in the system Hamiltonian. This sliding mode control approach provides a useful control theoretic tool for robust quantum information processing with uncertainties.Comment: 18 pages, 4 figure
    corecore