4,045 research outputs found

    Astrophysical Configurations with Background Cosmology: Probing Dark Energy at Astrophysical Scales

    Full text link
    We explore the effects of a positive cosmological constant on astrophysical and cosmological configurations described by a polytropic equation of state. We derive the conditions for equilibrium and stability of such configurations and consider some astrophysical examples where our analysis may be relevant. We show that in the presence of the cosmological constant the isothermal sphere is not a viable astrophysical model since the density in this model does not go asymptotically to zero. The cosmological constant implies that, for polytropic index smaller than five, the central density has to exceed a certain minimal value in terms of the vacuum density in order to guarantee the existence of a finite size object. We examine such configurations together with effects of Λ\Lambda in other exotic possibilities, such as neutrino and boson stars, and we compare our results to N-body simulations. The astrophysical properties and configurations found in this article are specific features resulting from the existence of a dark energy component. Hence, if found in nature would be an independent probe of a cosmological constant, complementary to other observations.Comment: 23 pages, 11 figures, 2 tables. Reference added. Mon. Not. Roy. Astro. Soc in prin

    Cosmological simulations with disformally coupled symmetron fields

    Full text link
    We investigate statistical properties of the distribution of matter at redshift zero in disformal gravity by using N-body simulations. The disformal model studied here consists of a conformally coupled symmetron field with an additional exponential disformal term. We conduct cosmological simulations to discover the impact of the new disformal terms in the matter power spectrum, halo mass function, and radial profile of the scalar field. We calculated the disformal geodesic equation and the equation of motion for the scalar field. We then implemented these equations into the N-body code ISIS, which is a modified gravity version of the code RAMSES. The presence of a conformal symmetron field increases both the power spectrum and mass function compared to standard gravity on small scales. Our main finding is that the newly added disformal terms tend to counteract these effects and can make the evolution slightly closer to standard gravity. We finally show that the disformal terms give rise to oscillations of the scalar field in the centre of the dark matter haloes.Comment: Updated version to reflect the journal accepted paper. Added one figure. 7 pages, 7 figure

    Symmetron with a non-minimal kinetic term

    Full text link
    We investigate the compatibility of the Symmetron with dark energy by introducing a non-minimal kinetic term associated with the Symmetron. In this new model, the effect of the friction term appearing in the equation of motion of the Symmetron field becomes more pronounced due to the non-minimal kinetic term appearing in the action and, under specific conditions after symmetry breaking, the universe experiences an accelerating phase which, in spite of the large effective mass of the scalar field, lasts as long as the Hubble time H0H_{0}.Comment: 12 pages, 4 figures, to appear in JCA

    Cosmic voids in modified gravity scenarios

    Full text link
    Modified gravity (MG) theories aim to reproduce the observed acceleration of the Universe by reducing the dark sector while simultaneously recovering General Relativity (GR) within dense environments. Void studies appear to be a suitable scenario to search for imprints of alternative gravity models on cosmological scales. Voids cover an interesting range of density scales where screening mechanisms fade out, which reaches from a density contrast δ1\delta \approx -1 close to their centers to δ0\delta \approx 0 close to their boundaries. We present an analysis of the level of distinction between GR and two modified gravity theories, the Hu-Sawicki f(R)f(R) and the symmetron theory. This study relies on the abundance, linear bias, and density profile of voids detected in n-body cosmological simulations. We define voids as connected regions made up of the union of spheres with a {\it \textup{mean}} density given by ρv=0.2ρm\overline\rho_v=0.2\,\overline\rho_m, but disconnected from any other voids. We find that the height of void walls is considerably affected by the gravitational theory, such that it increases for stronger gravity modifications. Finally, we show that at the level of dark matter n-body simulations, our constraints allow us to distinguish between GR and MG models with fR0>106|f_{R0}| > 10^{-6} and zSSB>1z_{SSB} > 1. Differences of best-fit values for MG parameters that are derived independently from multiple void probes may indicate an incorrect MG model. This serves as an important consistency check.Comment: 15 pages, 12 figure

    An analytic model for the transition from decelerated to accelerated cosmic expansion

    Full text link
    We consider the scenario where our observable universe is devised as a dynamical four-dimensional hypersurface embedded in a five-dimensional bulk spacetime, with a large extra dimension, which is the {\it generalization of the flat FRW cosmological metric to five dimensions}. This scenario generates a simple analytical model where different stages of the evolution of the universe are approximated by distinct parameterizations of the {\it same} spacetime. In this model the evolution from decelerated to accelerated expansion can be interpreted as a "first-order" phase transition between two successive stages. The dominant energy condition allows different parts of the universe to evolve, from deceleration to acceleration, at different redshifts within a narrow era. This picture corresponds to the creation of bubbles of new phase, in the middle of the old one, typical of first-order phase transitions. Taking Ωm=0.3\Omega_{m} = 0.3 today, we find that the cross-over from deceleration to acceleration occurs at z11.5z \sim 1-1.5 , regardless of the equation of state in the very early universe. In the case of primordial radiation, the model predicts that the deceleration parameter "jumps" from q+1.5q \sim + 1.5 to q0.4q \sim - 0.4 at z1.17z \sim 1.17. At the present time q=0.55q = - 0.55 and the equation of state of the universe is w=p/ρ0.7w = p/\rho \sim - 0.7 , in agreement with observations and some theoretical predictions.Comment: The abstract and introduction are improved and the discussion section is expanded. A number of references are adde
    corecore