2,322 research outputs found

    Melting and Rippling Phenomenan in Two Dimensional Crystals with localized bonding

    Full text link
    We calculate Root Mean Square (RMS) deviations from equilibrium for atoms in a two dimensional crystal with local (e.g. covalent) bonding between close neighbors. Large scale Monte Carlo calculations are in good agreement with analytical results obtained in the harmonic approximation. When motion is restricted to the plane, we find a slow (logarithmic) increase in fluctuations of the atoms about their equilibrium positions as the crystals are made larger and larger. We take into account fluctuations perpendicular to the lattice plane, manifest as undulating ripples, by examining dual layer systems with coupling between the layers to impart local rigidly (i.e. as in sheets of graphene made stiff by their finite thickness). Surprisingly, we find a rapid divergence with increasing system size in the vertical mean square deviations, independent of the strength of the interplanar coupling. We consider an attractive coupling to a flat substrate, finding that even a weak attraction significantly limits the amplitude and average wavelength of the ripples. We verify our results are generic by examining a variety of distinct geometries, obtaining the same phenomena in each case.Comment: 17 pages, 28 figure

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    Plasticization and antiplasticization of polymer melts diluted by low molar mass species

    Full text link
    An analysis of glass formation for polymer melts that are diluted by structured molecular additives is derived by using the generalized entropy theory, which involves a combination of the Adam-Gibbs model and the direct computation of the configurational entropy based on a lattice model of polymer melts that includes monomer structural effects. Antiplasticization is accompanied by a "toughening" of the glass mixture relative to the pure polymer, and this effect is found to occur when the diluents are small species with strongly attractive interactions with the polymer matrix. Plasticization leads to a decreased glass transition temperature T_g and a "softening" of the fragile host polymer in the glass state. Plasticization is prompted by small additives with weakly attractive interactions with the polymer matrix. The shifts in T_g of polystyrene diluted by fully flexible short oligomers are evaluated from the computations, along with the relative changes in the isothermal compressibility at T_g to characterize the extent to which the additives act as antiplasticizers or plasticizers. The theory predicts that a decreased fragility can accompany both antiplasticization and plasticization of the glass by molecular additives. The general reduction in the T_g and fragility of polymers by these molecular additives is rationalized by analyzing the influence of the diluent's properties (cohesive energy, chain length, and stiffness) on glass formation in diluted polymer melts. The description of glass formation at fixed temperature that is induced upon change the fluid composition directly implies the Angell equation for the structural relaxation time as function of the polymer concentration, and the computed "zero mobility concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence

    Full text link
    In the framework of melting as a dislocation-mediated phase transition we derive an equation for the pressure dependence of the melting temperatures of the elements valid up to pressures of order their ambient bulk moduli. Melting curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar, Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated melting curves are in good agreement with existing data. We also discuss the apparent equivalence of our melting relation and the Lindemann criterion, and the lack of the rigorous proof of their equivalence. We show that the would-be mathematical equivalence of both formulas must manifest itself in a new relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure

    Density functional theory of freezing: Analysis of crystal density

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/87/9/10.1063/1.453663The density functional theory of freezing is used to study the liquid to crystal phase transition in the hardsphere and Lennard‐Jones systems. An important step in the calculation is the parametrization of the solid phase average single particle density ρ(r). In this work two popular parametrizations are compared. The first method is a general Fourier decomposition of the periodic solid density in which the amplitude of each (non‐symmetry‐related) Fourier component is treated as an independent parameter. The second parametrization, which is more restrictive but easier to implement, approximates the solid density as a sum of Gaussian peaks centered at the sites of a periodic lattice. The two methods give essentially identical results for the phase diagrams for the two systems studied, but the crystal density predicted by the Fourier method exhibits significant anisotropies which are excluded from the Gaussian representation by construction

    A modified seasonal cycle during MIS31 super-interglacial favors stronger interannual ENSO and monsoon variability

    Get PDF
    It has long been recognized that the amplitude of the seasonal cycle can substantially modify climate features in distinct timescales. This study evaluates the impact of the enhanced seasonality characteristic of the Marine Isotope Stage 31 (MIS31) on the El Niño–Southern Oscillation (ENSO). Based upon coupled climate simulations driven by present-day (CTR) and MIS31 boundary conditions, we demonstrate that the CTR simulation shows a significant concentration of power in the 3–7-year band and on the multidecadal timescale between 15 and 30 years. However, the MIS31 simulation shows drastically modified temporal variability of the ENSO, with stronger power spectrum at interannual timescales but the absence of decadal periodicity. Increased meridional gradient of sea surface temperature (SST) and wind stress in the Northern Hemisphere subtropics are revealed to be the primary candidates responsible for changes in the equatorial variability. The oceanic response to the MIS31 ENSO extends to the extratropics, and fits nicely with SST anomalies delivered by paleoreconstructions. The implementation of the MIS31 conditions results in a distinct global monsoon system and its link to the ENSO in respect to current conditions. In particular, the Indian monsoon intensified but no correlation with ENSO is found in the MIS31 climate, diverging from conditions delivered by our current climate in which this monsoon is significantly correlated with the NIÑO34 index. This indicates that monsoonal precipitation for this interglacial is more closely connected to hemispherical features than to the tropical–extratropical climate interaction.</p

    Disappearance and Appearance of an Indigestible Marker in Feces from Growing Pigs as Affected by Previous- and Current-Diet Composition

    Get PDF
    Background: Indigestible markers are commonly utilized in digestion studies, but the complete disappearance or maximum appearance of a marker in feces can be affected by diet composition, feed intake, or an animal’s BW. The objectives of this study were to determine the impact of previous (Phase 1, P1) and current- (Phase 2, P2) diet composition on marker disappearance (Cr) and appearance (Ti) in pigs fed 3 diets differing in NDF content. Results: When pigs were maintained on the 25.1, 72.5, and 125.0 g/kg NDF diets, it took 5.1, 4.1, and 2.5 d, respectively, for Cr levels to decrease below the limit of quantitation; or 4.6, 3.7, or 2.8 d, respectively, for Ti to be maximized. These effects were not, however, independent of the previous diet as indicated by the interaction between P1 and P2 diets on fecal marker concentrations (P \u3c 0.01). When dietary NDF increased from P1 to P2, it took less time for fecal Cr to decrease or fecal Ti to be maximized (an average of 2.5 d), than if NDF decreased from P1 to P2 where it took longer for fecal Cr to decrease or fecal Ti to be maximized (an average of 3.4 d). Conclusions: Because of the wide range in excretion times reported in the literature and improved laboratory methods for elemental detection, the data suggests that caution must be taken in considering dietary fiber concentrations of the past and currently fed diets so that no previous dietary marker addition remains in the digestive tract or feces such that a small amount of maker is present to confound subsequent experimental results, and that marker concentration have stabilized when these samples are collected

    Physical Aspects of Axonemal Beating and Swimming

    Full text link
    We discuss a two-dimensional model for the dynamics of axonemal deformations driven by internally generated forces of molecular motors. Our model consists of an elastic filament pair connected by active elements. We derive the dynamic equations for this system in presence of internal forces. In the limit of small deformations, a perturbative approach allows us to calculate filament shapes and the tension profile. We demonstrate that periodic filament motion can be generated via a self-organization of elastic filaments and molecular motors. Oscillatory motion and the propagation of bending waves can occur for an initially non-moving state via an instability termed Hopf bifurcation. Close to this instability, the behavior of the system is shown to be independent of microscopic details of the axoneme and the force-generating mechanism. The oscillation frequency however does depend on properties of the molecular motors. We calculate the oscillation frequency at the bifurcation point and show that a large frequency range is accessible by varying the axonemal length between 1 and 50μ\mum. We calculate the velocity of swimming of a flagellum and discuss the effects of boundary conditions and externally applied forces on the axonemal oscillations.Comment: 14 pages, 8 figures, REVTE
    corecore