57,111 research outputs found
Long-lived selective spin echoes in dipolar solids under periodic and aperiodic pi-pulse trains
The application of Carr-Purcell-Meiboom-Gill (CPMG) trains for
dynamically decoupling a system from its environment has been extensively
studied in a variety of physical systems. When applied to dipolar solids,
recent experiments have demonstrated that CPMG pulse trains can generate
long-lived spin echoes. While there still remains some controversy as to the
origins of these long-lived spin echoes under the CPMG sequence, there is a
general agreement that pulse errors during the pulses are a necessary
requirement. In this work, we develop a theory to describe the spin dynamics in
dipolar coupled spin-1/2 system under a CPMG() pulse train,
where and are the phases of the pulses. From our
theoretical framework, the propagator for the CPMG() pulse
train is equivalent to an effective ``pulsed'' spin-locking of single-quantum
coherences with phase , which generates a
periodic quasiequilibrium that corresponds to the long-lived echoes. Numerical
simulations, along with experiments on both magnetically dilute, random spin
networks found in C and C and in non-dilute spin systems found in
adamantane and ferrocene, were performed and confirm the predictions from the
proposed theory.Comment: 25 pages, 12 figures, submitted to Physical Review
Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C
Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers
Studies of Martian polar regions
The flow law determined experimentally for solid CO2 establishes that an hypothesis of glacial flow of CO2 at the Martian poles is not physically unrealistic. Compression experiments carried out under 1 atmosphere pressure and constant strain rate conditions demonstrate that the strength of CO2 near its sublimation point is considerably less than the strength of water ice near its melting point. A plausible glacial model for the Martian polar caps was constructed. The CO2 deposited near the pole would have flowed outward laterally to relieve high internal shear stresses. The topography of the polar caps, and the uniform layering and general extent of the layered deposits were explained using this model
Nonlinear backreaction in a quantum mechanical SQUID
In this paper we discuss the coupling between a quantum mechanical
superconducting quantum interference device (SQUID) and an applied static
magnetic field. We demonstrate that the backreaction of a SQUID on the applied
field can interfere with the ability to bias the SQUID at values of the static
(DC) magnetic flux at, or near to, transitions in the quantum mechanical SQUID.Comment: 9 pages, to be published in Phys. Rev.
Effect of area ratio on the performance of a 5.5:1 pressure ratio centrifugal impeller
A centrifugal impeller which was initially designed for a pressure ratio of approximately 5.5 and a mass flow rate of 0.959 kg/sec was tested with a vaneless diffuser for a range of design point impeller area ratios from 2.322 to 2.945. The impeller area ratio was changed by successively cutting back the impeller exit axial width from an initial value of 7.57 mm to a final value of 5.97 mm. In all, four separate area ratios were tested. For each area ratio a series of impeller exit axial clearances was also tested. Test results are based on impeller exit surveys of total pressure, total temperature, and flow angle at a radius 1.115 times the impeller exit radius. Results of the tests at design speed, peak efficiency, and an exit tip clearance of 8 percent of exit blade height show that the impeller equivalent pressure recovery coefficient peaked at a design point area ratio of approximately 2.748 while the impeller aerodynamic efficiency peaked at a lower value of area ratio of approximately 2.55. The variation of impeller efficiency with clearance showed expected trends with a loss of approximately 0.4 points in impeller efficiency for each percent increase in exit axial tip clearance for all impellers tested
Guidance and Control in a Josephson Charge Qubit
In this paper we propose a control strategy based on a classical guidance law
and consider its use for an example system: a Josephson charge qubit. We
demonstrate how the guidance law can be used to attain a desired qubit state
using the standard qubit control fields.Comment: 9 pages, 5 figure
Hardware for digitally controlled scanned probe microscopes
The design and implementation of a flexible and modular digital control and data acquisition system for scanned probe microscopes (SPMs) is presented. The measured performance of the system shows it to be capable of 14-bit data acquisition at a 100-kHz rate and a full 18-bit output resolution resulting in less than 0.02-Å rms position noise while maintaining a scan range in excess of 1 µm in both the X and Y dimensions. This level of performance achieves the goal of making the noise of the microscope control system an insignificant factor for most experiments. The adaptation of the system to various types of SPM experiments is discussed. Advances in audio electronics and digital signal processors have made the construction of such high performance systems possible at low cost
Inventory of wetlands and agricultural land cover in the upper Sevier River Basin, Utah
The use of color infrared aerial photography in the mapping of agricultural land use and wetlands in the Sevier River Basin of south central utah is described. The efficiency and cost effectiveness of utilizing LANDSAT multispectral scanner digital data to augment photographic interpretations are discussed. Transparent overlays for 27 quadrangles showing delineations of wetlands and agricultural land cover were produced. A table summarizing the acreage represented by each class on each quadrangle overlay is provided
An updated stellar census of the Quintuplet cluster
Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event.
Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars.
Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively.
Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable.
Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe
- …