4 research outputs found

    About the realization of chiral symmetry in QCD2

    Get PDF
    Two dimensional massless Quantum Chromodynamics presents many features which resemble those of the true theory. In particular the spectrum consists of mesons and baryons arranged in flavor multiplets without parity doubling. We analyze the implications of chiral symmetry, which is not spontaneously broken in two dimensions, in the spectrum and in the quark condensate. We study how parity doubling, an awaited consequence of Coleman's theorem, is avoided due to the dimensionality of space-time and confinement. We prove that a chiral phase transition is not possible in the theory.Comment: 9 pages, latex, ftuv/92-

    Hamiltonian Quantization of Effective Lagrangians with Massive Vector Fields

    Full text link
    Effective Lagrangians containing arbitrary interactions of massive vector fields are quantized within the Hamiltonian path integral formalism. It is proven that correct Hamiltonian quantization of these models yields the same result as naive Lagrangian quantization (Matthews's theorem). This theorem holds for models without gauge freedom as well as for (linearly or nonlinearly realized) spontaneously broken gauge theories. The Stueckelberg formalism, a procedure to rewrite effective Lagrangians in a gauge invariant way, is reformulated within the Hamiltonian formalism as a transition from a second class constrained theory to an equivalent first class constrained theory. The relations between linearly and nonlinearly realized spontaneously broken gauge theories are discussed. The quartically divergent Higgs self interaction is derived from the Hamiltonian path integral.Comment: 16 pages LaTeX, BI-TP 93/1

    A new approach to physics of nuclei

    No full text
    corecore