433 research outputs found

    Discrete quantum gravity: a mechanism for selecting the value of fundamental constants

    Get PDF
    Smolin has put forward the proposal that the universe fine tunes the values of its physical constants through a Darwinian selection process. Every time a black hole forms, a new universe is developed inside it that has different values for its physical constants from the ones in its progenitor. The most likely universe is the one which maximizes the number of black holes. Here we present a concrete quantum gravity calculation based on a recently proposed consistent discretization of the Einstein equations that shows that fundamental physical constants change in a random fashion when tunneling through a singularity.Comment: 5 pages, RevTex, 4 figures, honorable mention in the 2003 Gravity Research Foundation Essays, to appear in Int. J. Mod. Phys.

    Child universes UV regularization?

    Get PDF
    It is argued that high energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling prevents these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which takes into account gravitational effects. Also child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular connection to the maximal curvature hypothesis are discussed.Comment: 6 pages, RevTex, discussion to the maximum curvature hypothesis adde

    Wormholes and Child Universes

    Full text link
    Evidence to the case that classical gravitation provides the clue to make sense out of quantum gravity is presented. The key observation is the existence in classical gravitation of child universe solutions or "almost" solutions, "almost" because of some singularity problems. The difficulties of these child universe solutions due to their generic singularity problems will be very likely be cured by quantum effects, just like for example "almost" instanton solutions are made relevant in gauge theories with breaking of conformal invariance. Some well motivated modifcations of General Relativity where these singularity problems are absent even at the classical level are discussed. High energy density excitations, responsible for UV divergences in quantum field theories, including quantum gravity, are likely to be the source of child universes which carry them out of the original space time. This decoupling could prevent these high UV excitations from having any influence on physical amplitudes. Child universe production could therefore be responsible for UV regularization in quantum field theories which take into account semiclassically gravitational effects. Child universe production in the last stages of black hole evaporation, the prediction of absence of tranplanckian primordial perturbations, connection to the minimum length hypothesis and in particular the connection to the maximal curvature hypothesis are discussed. Some discussion of superexcited states in the case these states are Kaluza Klein excitations is carried out. Finally, the posibility of obtaining "string like" effects from the wormholes associated with the child universes is discussed.Comment: Talk presented at the IWARA 2009 Conference, Maresias, Brazil, October 2009, accepted for publication in the proceedings, World Scientific format, 8 page

    Standard Model Parameters and the Cosmological Constant

    Get PDF
    Simple functional relations amongst standard model couplings, including gravitional, are conjectured. Possible implications for cosmology and future theory are discussed.Comment: submitted to Physical Review

    Cosmological constraints from CMB distortion

    Full text link
    We examine bounds on adiabatic and isocurvature density fluctuations from μ\mu-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running, and will help to constrain these parameters on significantly smaller scales. We show that a detection on the order of μ107\mu \sim 10^{-7} would strongly be at odds with the standard cosmological model of a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find that given the current CMB constraints on the isocurvature mode amplitude, a nearly scale-invariant isocurvature mode (common in many curvaton models) cannot produce significant μ\mu-distortion. Finally, we show that future experiments will strongly constrain the amplitude of the isocurvature modes with a highly blue spectrum as predicted by certain axion models.Comment: 6 pages, 4 figures, version 3 contains a new figure showing the contribution to \mu_k as a function of k, and a clarification regarding the acoustic wave energy, accompanied by a related acknowledgement and referenc

    Black Holes and Photons with Entropic Force

    Full text link
    We study entropic force effects on black holes and photons. We find that application of an entropic analysis restricts the radial change ΔR\Delta R of a black hole of radius RHR_{\mathrm{H}}, due to a test particle of a Schwartzchild radius RhR_{h} moving towards the black hole by Δx\Delta x near black body surface, to be given by a relation RHΔR=RhΔx/2R_{\mathrm{H}} \Delta R= R_h \Delta x/2, or {\Delta R}/{\lambdabar_M} = {\Delta x}/{2 \lambdabar_m}. We suggest a new rule regarding entropy changes in different dimensions, \Delta S= 2\pi k D \Delta l /\lambdabar, which unifies Verlinde's conjecture and the black hole entropy formula. We also propose to extend the entropic force idea to massless particles such as a photon. We find that there is an entropic force on a photon of energy EγE_\gamma, with F=GMmγ/R2F=G M m_{\gamma}/R^2, and therefore the photon has an effective gravitational mass mγ=Eγ/c2m_\gamma = E_\gamma/c^2.Comment: 4 Latex pages, no figure

    Chemostratigraphy of the upper jurassic (oxfordian) smackover formation for little cedar creek and brooklyn fields, alabama

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. The Upper Jurassic(Oxfordian Age)Smackover Formation is a significant source for hydrocarbon production in southwest Alabama. Brooklyn Field is in southeast Conecuh County, Alabama, and has been a major producer of oil and natural gas for the state. The Smackover is a carbonate formation that has been divided into seven distinct lithofacies in the Brooklyn and Little Cedar Creek fields. In southwest Alabama, the facies distribution in the Smackover Formation was influenced by paleotopography of the underlying Paleozoic rocks of the Appalachian system. The goal of this study is to determine elemental ratios in rock core within the Smackover Formation using an X-ray fluorescence(XRF)handheld scanner and to correlate these elemental characteristics to the lithofacies of the Smackover Formation in the Brooklyn and Little Cedar Creek fields. Eight wells were used for the study within Brooklyn Field and Little Cedar Creek fields. Cores from the eight wells were scanned at six-inch intervals. Chemical logs were produced to show elemental weights in relation to depth and lithofacies. The chemical signatures within producing zones were correlated to reservoir lithofacies and porosity. Aluminum, silicon, calcium, titanium, and iron were the most significant(\u3e95% confidence level)predictors of porosity and may be related to the depositional environment and subsequent diageneses of the producing facies. The XRF data suggests relative enrichments in iron, titanium, and potassium. These elements may be related to deposition in relatively restricted marine waters

    Generalized Slow Roll Conditions and the Possibility of Intermediate Scale Inflation in Scalar-Tensor Theory

    Get PDF
    Generalized slow roll conditions and parameters are obtained for a general form of scalar-tensor theory (with no external sources), having arbitrary functions describing a nonminimal gravitational coupling F(\phi), a Kahler-like kinetic function k(\phi), and a scalar potential V(\phi). These results are then used to analyze a simple toy model example of chaotic inflation with a single scalar field \phi and a standard Higgs potential and a simple gravitational coupling function. In this type of model inflation can occur with inflaton field values at an intermediate scale of roughly 10^{11} GeV when the particle physics symmetry breaking scale is approximately 1 TeV, provided that the theory is realized within the Jordan frame. If the theory is realized in the Einstein frame, however, the intermediate scale inflation does not occur.Comment: 14 pages, no figs. Accepted to Classical and Quantum Gravit

    Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    Full text link
    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum.Comment: 25 pages, 8 figures, revised version, accepted for publication in JCA

    Seagrass Health Modeling and Prediction with NASA Science Data

    Get PDF
    Previous research has demonstrated that MODIS data products can be used as inputs into the seagrass productivity model developed by Fong and Harwell (1994). To further explore this use to predict seagrass productivity, Moderate Resolution Imaging Spectroradiometer (MODIS) custom data products, including Sea Surface Temperature, Light Attenuation, and Chlorophyll-a have been created for use as model parameter inputs. Coastal researchers can use these MODIS data products and model results in conjunction with historical and daily assessment of seagrass conditions to assess variables that affect the productivity of the seagrass beds. Current monitoring practices involve manual data collection (typically on a quarterly basis) and the data is often insufficient for evaluating the dynamic events that influence seagrass beds. As part of a NASA-funded research grant, the University of Mississippi, is working with researchers at NASA and Radiance Technologies to develop methods to deliver MODIS derived model output for the northern Gulf of Mexico (GOM) to coastal and environmental managers. The result of the project will be a data portal that provides access to MODIS data products and model results from the past 5 years, that includes an automated process to incorporate new data as it becomes available. All model parameters and final output will be available through the use National Oceanic and Atmospheric Administration?s (NOAA) Environmental Research Divisions Data Access Program (ERDDAP) tools as well as viewable using Thematic Realtime Environmental Distributed Data Services (THREDDS) and the Integrated Data Viewer (IDV). These tools provide the ability to create raster-based time sequences of model output and parameters as well as create graphs of model parameters versus time. This tool will provide researchers and coastal managers the ability to analyze the model inputs so that the factors influencing a change in seagrass productivity can be determined over time
    corecore