2,666 research outputs found

    A closer look at arrested spinodal decomposition in protein solutions

    Get PDF
    Concentrated aqueous solutions of the protein lysozyme undergo a liquid solid transition upon a temperature quench into the unstable spinodal region below a characteristic arrest temperature of Tf=15C. We use video microscopy and ultra-small angle light scattering in order to investigate the arrested structures as a function of initial concentration, quench temperature and rate of the temperature quench. We find that the solid-like samples show all the features of a bicontinuous network that is formed through an arrested spinodal decomposition process. We determine the correlation length Xi and demonstrate that Xi exhibits a temperature dependence that closely follows the critical scaling expected for density fluctuations during the early stages of spinodal decomposition. These findings are in agreement with an arrest scenario based on a state diagram where the arrest or gel line extends far into the unstable region below the spinodal line. Arrest then occurs when during the early stage of spinodal decomposition the volume fraction phi2 of the dense phase intersects the dynamical arrest threshold phi2Glass, upon which phase separation gets pinned into a space-spanning gel network with a characteristic length Xi

    Quantum Hall Spherical Systems: the Filling Fraction

    Get PDF
    Within the newly formulated composite fermion hierarchy the filling fraction of a spherical quantum Hall system is obtained when it can be expressed as an odd or even denominator fraction. A plot of ν2SN1\nu\frac{2S}{N-1} as a function of 2S2S for a constant number of particles (up to N=10001) exhibits structure of the fractional quantum Hall effect. It is confirmed that νe+νh=1\nu_e +\nu_h=1 for all particle-hole conjugate systems, except systems with Ne=NhN_e =N_h, and Ne=Nh±1N_e=N_h \pm 1.Comment: 3 pages, Revtex, 7 PostScript figures, submitted to Phys. Rev. B Rapid Communicatio

    Theory of Anomalous Quantum Hall Effects in Graphene

    Full text link
    Recent successes in manufacturing of atomically thin graphite samples (graphene) have stimulated intense experimental and theoretical activity. The key feature of graphene is the massless Dirac type of low-energy electron excitations. This gives rise to a number of unusual physical properties of this system distinguishing it from conventional two-dimensional metals. One of the most remarkable properties of graphene is the anomalous quantum Hall effect. It is extremely sensitive to the structure of the system; in particular, it clearly distinguishes single- and double-layer samples. In spite of the impressive experimental progress, the theory of quantum Hall effect in graphene has not been established. This theory is a subject of the present paper. We demonstrate that the Landau level structure by itself is not sufficient to determine the form of the quantum Hall effect. The Hall quantization is due to Anderson localization which, in graphene, is very peculiar and depends strongly on the character of disorder. It is only a special symmetry of disorder that may give rise to anomalous quantum Hall effects in graphene. We analyze the symmetries of disordered single- and double-layer graphene in magnetic field and identify the conditions for anomalous Hall quantization.Comment: 13 pages (article + supplementary material), 5 figure

    A new Proposal for a Quasielectron Trial Wavefunction for the FQHE on a Disk

    Full text link
    In this letter, we propose a new quasielectron trial wavefunction for NN interacting electrons in two dimensions moving in a strong magnetic field in a disk geometry. Requiring that the trial wavefunction exhibits the correct filling factor of a quasielectron wavefunction, we obtain N+1N+1 angular momentum eigenfunctions. The expectation values of the energy are calculated and compared with the data of an exact numerical diagonalization.Comment: 8 page

    Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope

    Get PDF
    Doppler and transit surveys are finding extrasolar planets of ever smaller mass and radius, and are now sampling the domain of superEarths (1-3 Earth radii). Recent results from the Doppler surveys suggest that discovery of a transiting superEarth in the habitable zone of a lower main sequence star may be possible. We evaluate the prospects for an all-sky transit survey targeted to the brightest stars, that would find the most favorable cases for photometric and spectroscopic characterization using the James Webb Space Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite (TESS) as representative of an all-sky survey. We couple the simulated TESS yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We focus on the TESS planets with radii between Earth and Neptune. Our simulations consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11- and 15-micron bands to measure CO2 absorption in superEarths, as well as JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2 absorption at 4.3-microns. We project that TESS will discover about eight nearby habitable transiting superEarths. The principal sources of uncertainty in the prospects for JWST characterization of habitable superEarths are superEarth frequency and the nature of superEarth atmospheres. Based on our estimates of these uncertainties, we project that JWST will be able to measure the temperature, and identify molecular absorptions (water, CO2) in one to four nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets; abridged Abstrac

    Fractional Statistics in terms of the r-Generalized Fibonacci Sequences

    Get PDF
    We develop the basis of the two dimensional generalized quantum statistical systems by using results on rr-generalized Fibonacci sequences. According to the spin value ss of the 2d-quasiparticles, we distinguish four classes of quantum statistical systems indexed by s=0,1/2:mod(1) s=0,1/2:mod(1), s=1/M:mod(1)s=1/M:mod(1), s=n/M:mod(1)s=n/M:mod(1) and 0s1:mod(1)0\leq s\leq 1:mod(1). For quantum gases of quasiparticles with s=1/M:mod(1)s=1/M:mod(1), M2,M\geq 2,, we show that the statistical weights densities ρM\rho_M are given by the integer hierarchies of Fibonacci sequences. This is a remarkable result which envelopes naturally the Fermi and Bose statistics and may be thought of as an alternative way to the Haldane interpolating statistical method.Comment: Late

    Fundamental constants in effective theory

    Get PDF
    There is a discussion between L. B. Okun, G. Veneziano and M. J. Duff, concerning the number of fundamental dimensionful constants in physics (physics/0110060). They advocated correspondingly 3, 2 and 0 fundamental constants. Here we consider this problem on example of the effective relativistic quantum field theory, which emerges in the low energy corner of quantum liquids and which reproduces many features of our physics including chiral fermions, gauge fields and dynamical gravity.Comment: LaTeX file, 9 pages, version submitted to JETP Letter

    Topological Quantum Phase Transitions in Topological Superconductors

    Full text link
    In this paper we show that BF topological superconductors (insulators) exibit phase transitions between different topologically ordered phases characterized by different ground state degeneracy on manifold with non-trivial topology. These phase transitions are induced by the condensation (or lack of) of topological defects. We concentrate on the (2+1)-dimensional case where the BF model reduce to a mixed Chern-Simons term and we show that the superconducting phase has a ground state degeneracy kk and not k2k^2. When the symmetry is U(1)×U(1)U(1) \times U(1), namely when both gauge fields are compact, this model is not equivalent to the sum of two Chern-Simons term with opposite chirality, even if naively diagonalizable. This is due to the fact that U(1) symmetry requires an ultraviolet regularization that make the diagonalization impossible. This can be clearly seen using a lattice regularization, where the gauge fields become angular variables. Moreover we will show that the phase in which both gauge fields are compact is not allowed dynamically.Comment: 5 pages, no figure
    corecore