1,819 research outputs found

    The biogeochemistry of microbial mats, stromatolites and the ancient biosphere

    Get PDF
    Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented

    Asymptotic enumeration of dense 0-1 matrices with specified line sums

    Get PDF
    Let S=(s_1,s_2,..., s_m) and T = (t_1,t_2,..., t_n) be vectors of non-negative integers with sum_{i=1}^{m} s_i = sum_{j=1}^n t_j. Let B(S,T) be the number of m*n matrices over {0,1} with j-th row sum equal to s_j for 1 <= j <= m and k-th column sum equal to t_k for 1 <= k <= n. Equivalently, B(S,T) is the number of bipartite graphs with m vertices in one part with degrees given by S, and n vertices in the other part with degrees given by T. Most research on the asymptotics of B(S,T) has focused on the sparse case, where the best result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends the analytic methods used by the latter paper to the case where the row and column sums can vary within certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case.Comment: Multiple minor adjustments. Accepted by JCT-

    Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions

    Get PDF
    We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium, respectively. We observe an initial increase of the ferromagnetic transition temperature Tc with pressures up to 4.5 GPa, followed by decrease of Tc on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum critical point around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of Tc and the maximum of the A coefficient from low temperature fits of the resistivity \rho (T)=\rho_{0}+AT^{n}. No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the Tc(P) behavior when a slight uniaxial component is present are noticed and discussed and correlated to choice of pressure medium

    Angular dependent planar metamagnetism in the hexagonal compounds TbPtIn and TmAgGe

    Get PDF
    Detailed magnetization measurements, M(T,H,theta), were performed on single crystals of TbPtIn and TmAgGe (both members of the hexagonal Fe_2P/ZrNiAl structure type), for the magnetic field H applied perpendicular to the crystallographic c axis. These data allowed us to identify, for each compound, the easy-axes for the magnetization, which coincided with high symmetry directions ([120] for TbPtIn and [110] for TmAgGe). For fixed orientations of the field along each of the two six-fold symmetry axes, a number of magnetically ordered phases is being revealed by M(H,T) measurements below T_N. Moreover, T ~ 2 K, M(H)|_theta measurements for both compounds (with H applied parallel to the basal plane), as well as T = 20 K data for TbPtIn, reveal five metamagnetic transitions with simple angular dependencies: H_{ci,j} ~ 1/cos(theta +/- phi), where phi = 0^0 or 60^0. The high field magnetization state varies with theta like 2/3*mu_{sat}(R^{3+})*cos(theta), and corresponds to a crystal field limited saturated paramagnetic, CL-SPM, state. Analysis of these data allowed us to model the angular dependence of the locally saturated magnetizations M_{sat} and critical fields H_c with a three coplanar Ising-like model, in which the magnetic moments are assumed to be parallel to three adjacent easy axes. Furthermore, net distributions of moments were inferred based on the measured data and the proposed model

    Regularly spaced subsums of integer partitions

    Full text link
    For integer partitions λ:n=a1+...+ak\lambda :n=a_1+...+a_k, where a1a2>...ak1a_1\ge a_2\ge >...\ge a_k\ge 1, we study the sum a1+a3+...a_1+a_3+... of the parts of odd index. We show that the average of this sum, over all partitions λ\lambda of nn, is of the form n/2+(6/(8π))nlogn+c2,1n+O(logn).n/2+(\sqrt{6}/(8\pi))\sqrt{n}\log{n}+c_{2,1}\sqrt{n}+O(\log{n}). More generally, we study the sum ai+am+i+a2m+i+...a_i+a_{m+i}+a_{2m+i}+... of the parts whose indices lie in a given arithmetic progression and we show that the average of this sum, over all partitions of nn, is of the form n/m+bm,inlogn+cm,in+O(logn)n/m+b_{m,i}\sqrt{n}\log{n}+c_{m,i}\sqrt{n}+O(\log{n}), with explicitly given constants bm,i,cm,ib_{m,i},c_{m,i}. Interestingly, for mm odd and i=(m+1)/2i=(m+1)/2 we have bm,i=0b_{m,i}=0, so in this case the error term is of lower order. The methods used involve asymptotic formulas for the behavior of Lambert series and the Zeta function of Hurwitz. We also show that if f(n,j)f(n,j) is the number of partitions of nn the sum of whose parts of even index is jj, then for every nn, f(n,j)f(n,j) agrees with a certain universal sequence, Sloane's sequence \texttt{#A000712}, for jn/3j\le n/3 but not for any larger jj

    Crystal growth and annealing study of fragile, non-bulk superconductivity in YFe2_2Ge2_2

    Get PDF
    We investigated the occurrence and nature of superconductivity in single crystals of YFe2_2Ge2_2 grown out of Sn flux by employing x-ray diffraction, electrical resistivity, and specific heat measurements. We found that the residual resistivity ratio (RRR) of single crystals can be greatly improved, reaching as high as \sim60, by decanting the crystals from the molten Sn at \sim350^\circC and/or by annealing at temperatures between 550^\circC and 600^\circC. We found that samples with RRR \gtrsim 34 showed resistive signatures of superconductivity with the onset of the superconducting transition Tc1.4T_c\approx1.4 K. RRR values vary between 35 and 65 with, on average, no systematic change in TcT_c value, indicating that systematic changes in RRR do not lead to comparable changes in TcT_c. Specific heat measurements on samples that showed clear resistive signatures of a superconducting transition did not show any signature of a superconducting phase transition, which suggests that the superconductivity observed in this compound is either some sort of filamentary, strain stabilized superconductivity associated with small amounts of stressed YFe2_2Ge2_2 (perhaps at twin boundaries or dislocations) or is a second crystallographic phase present at levels below detection capability of conventional powder x-ray techniques.Comment: 8 pages, 11 figure

    Changes In Submersed Macrophytes In Relation To Tidal Storm Surges

    Get PDF
    We analyzed long-term submersed macrophyte presence-absence data collected from 15 stations in Kings Bay/Crystal River, Florida in relation to three major storm events. The percent occurrence of most species declined immediately after storm events but the recovery pattern after the storm differed among species. Hydrilla (Hydrilla verticillata (L.F.) Royle)and Eurasian watermilfoil (Myriophyllum spicatum L.) exhibited differing recolonization behaviors. Eurasian watermilfoil recolonized quickly after storms but declined in abundance as hydrilla began to increase in abundance. Natural catastrophic events restructure submersed macrophyte communities by eliminating the dominate species, and allowing revegetation and restructuring of communities. Tidal surges may also act to maintain species diversity in the system. In addition, catastrophic events remove dense nuisance plant growth for several years, altering the public's perception of the nuisance plant problem of Kings Bay/Crystal River

    Nutrient Limitation of Periphyton in a Spring-Fed, Coastal Stream in Florida, USA.

    Get PDF
    There is strong evidence to suggest that ground-water nitrate concentrations have increased in recent years and further increases are expected along portions of the central Gulf coast of Florida. Much of the nitrate enriched groundwater is discharged into surface waters through numerous freshwater springs that are characteristic of the area and the potential for eutrophication of their receiving waters is a legitimate concern. To test the potential effects of elevated nutrient concentrations on the periphyton community an in situ nutrient addition experiment was conducted in the spring-fed Chassahowitzka River, FL, USA, during the summer of 1999. Plastic tubes housing arrays of glass microscope slides were suspended in the stream. Periphyton colonizing the microscope slides was subjected to artificial increases in nitrogen, phosphorus or a combination of both. Slides from each tube were collected at 3- to 4- day intervals and the periphyton communities were measured for chlorophyll concentration. The addition of approximately 10 μg/L of phosphate above ambient concentrations significantly increased the amount of periphyton on artificial substrates relative to controls; the addition of approximately 100 μg/L of nitrate above ambient concentrations did not. The findings from this experiment implicated phosphorus, rather than nitrogen, as the nutrient that potentially limits periphyton growth in this system.(PDF contains 4 pages.

    Thermoelectric power of the YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) heavy fermions

    Get PDF
    The thermoelectric power, S(T), of the heavy fermions YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) has been measured to shed further light on their strong electronic correlations. A large, negative, local minimum in S(T) with approximately −70 μV/K is found for all compounds. From the observed local minimum, the energy scales associated with both the Kondo temperature and the crystalline electric field splitting are deduced and compared to previous specific heat measurements. At low temperatures, a highly enhanced S(T)/T value is observed for all members, although S(T) does show a deviation from a purely linear temperature dependence, S(T) = αT, for T ≠ Fe members. In the zero-temperature limit, estimated by a simple linear extrapolation, the enhanced S(T)/T value strongly correlates with the electronic specific heat coefficient, C(T)/T
    corecore