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Abstract

Let s = (s1,82,...,8n) and ¢t = (t],12,...,1;) be vectors of non-negative integers with szzl s =
Z?:l tj. Let B(s,t) be the number of m x n matrices over {0, 1} with jth row sum equal to s; for
1 < j < m and kth column sum equal to #; for 1 < k < n. Equivalently, B(s, ¢) is the number of bipar-
tite graphs with m vertices in one part with degrees given by s, and n vertices in the other part with degrees
given by £. Most research on the asymptotics of B(s, ¢) has focused on the sparse case, where the best
result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result
is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends
the analytic methods used by the latter paper to the case where the row and column sums can vary within
certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case.
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1. Introduction

Lets = (s1,52,...,8,) and t = (t1, 12, ..., t,) be vectors of positive integers with sz=1 S; =
Z’}zl tj. Let B(s, t) be the number of m x n matrices over {0, 1} with jth row sum equal to
sj for 1 < j < m and kth column sum equal to # for 1 < k < n. Equivalently, B(s, f) is the
number of labeled bipartite graphs with m vertices in one part of the bipartition with degrees
given by s, and n vertices in the other part of the bipartition with degrees given by ¢. Let s be the
average value of sq, 52, ..., s;, and let 7 be the average value of 11, 12, ..., #,. Define the density
A =s/n =t/m, which is the fraction of entries in the matrix which equal 1.

The asymptotic value of B(s, ¢) has been much studied, especially since the celebrated Gale—
Ryser Theorem [10] that characterizes (s, ¢) such that B(s, ¢) > 0. Various authors have con-
sidered the semiregular case, where s; =s for 1 < j <m and # =1t for 1 <k < n. Write
B(m,s;n,t) for B(s, t) in this case. For the sparse (low-A) semiregular case, the best result
is by McKay and Wang [7] who gave an asymptotic expression for B(m, s; n,t) which holds
when st = o((mn)'/?). Canfield and McKay [1] used analytic methods to obtain an asymptotic
expression for B(m,s;n,t) in two ranges: in the first, the matrix is relatively square and the
density is not too close to 0 or 1, while in the second, the matrix is much wider than high (or
vice versa) but the density is arbitrary. For the sparse irregular case, the best result is that of
Greenhill, McKay and Wang [2], who gave an asymptotic expression for B(s, ¢) which holds
when max{s;} max{#} = o((Amn)?/3).

See [1,2] and [7] for a more extensive historical survey.

The contribution of this paper is to adapt the approach of [1] to the dense irregular case
when the matrix is relatively square and the density is not too close to 0 or 1. See McKay and
Wormald [8] for the corresponding calculation for symmetric matrices.

In keeping with these earlier papers, the asymptotic value of B(s, t) can be expressed by a
very nice formula involving binomial coefficients. We now state our theorem.

Theorem 1. Let s = s(m,n) = (51,52,...,5n) and t =t(m,n) = (t1,t2,...,1t,) be vectors
of positive integers such that 37_ys; = 3 _; t for all m,n. Define s = m~! Ylicispt=
n-! Yicitk A=s/n=t/m and A = %)\(l — A). For some & > 0, suppose that |s; — s| =
O (n'2*8) uniformly for 1 < j <m, and |ty — t| = O (m'/**+) uniformly for 1 < k < n. Define
R= Z;’;l(sj —$)? and C =Y }_,(tx — )% Let a,b > 0 be constants such that a + b < %
Suppose that m, n — oo with n = 0(A2m'1¢), m = 0(A%n'*%) and

(1 —21)2 (1 5m  5n

T i)« .
8A + 6n + 6m) Salogn

Then, provided ¢ > 0 is small enough, we have

n —1 m n n m
B(s,t) = </\mn) ]1:11 (s;) g <tk)

ceof -4~ 55) (555 +ot)

Proof. The proof of this theorem is the topic of the paper; here we will summarize the main
phases and draw their conclusions together. The basic idea is to identify B(s, ¢) as a coefficient in
a multivariable generating function and to extract that coefficient using the saddle-point method.
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In Section 2, Eq. (1), we write B(s,t) = P(s,t)I (s, t), where P(s,t) is a rational expression
and I (s, t) is an integral in m 4 n complex dimensions. Both depend on the location of the
saddle point, which is the solution of some non-linear equations. Those equations are solved
in Section 3, and this leads to the value of P(s, ) in (20). In Section 4, the integral I (s, )
is estimated in a small region R’ defined in (33). The result is given by Theorem 2 together
with (24). Finally, in Section 5, it is shown that the integral I (s, ¢) restricted to the exterior of R’
is negligible. The present theorem thus follows from (1), (20), Theorems 2-3 and (24). O

Note that the error term in the above slightly improves the error term for the semiregular case
proved in [1].
Theorem 1 has an instructive interpretation. Write it as B(s, t) = N P; P, E, where

m n
mn 1 n 1 m
N= . P=NTT] . Pp=NTTT(T)
()»W) : i <Sj> ’ palie <tk>

£ ZeXP<_%<1 B 2A1:nn)(1 B 2ACmn> * O("_b))'

Clearly, N is the number of m x n binary matrices with Amn ones. P is the probability that a
matrix randomly chosen from this class has row sums s, while P is the probability of the similar
event of having column sums ¢. If these two events were independent, we would have E = 1, so
E can be taken as a measure of their non-independence. For the case when s and ¢ are vectors of
constants, that is, R = C = 0, Ordentlich and Roth [9] proved that £ < 1.

It is proved in [2] that the same formula for B(s,¢) modulo the error term also holds
in the sparse case. Specifically, it holds with a different vanishing error term whenever
max{s;} max{t} = o((Amn)*3), R + C = O((Amn)*3) and RC = O((xmn)7/?). In [1], ev-
idence is presented that the formula is universal in the semiregular case (R = C = 0) and it is
tempting to conjecture that the same is true in the irregular case for a wide range of R, C values.

We will use a shorthand notation for summation over doubly subscripted variables. If x j; is a
variable for 1 < j <m and 1 < k < n, then

n m m
xjo:ij/m xok:Z-xj/ﬁ xoo:Z Xjks
k=1 j=I j

j=1k=1
n—1 m—1 m—1n—1

xj*zzxjk, x*kzzxjk, x**zzzxjk,
k=1 j=1 j=1 k=1

forI<j<mand 1<k <n.

Throughout the paper, the asymptotic notation O (f (m, n)) refers to the passage of m and n
to 0o. We also use a modified notation 5( f(m,n)), which is to be taken as a shorthand for
O(f(m, n)n?We) In this case it is important that the O (1) factor is uniform over ¢ provided
& is small enough; for example we cannot write f(m, n)n(fl)e as O (f(m,n)) even though
e l=001) (e being defined as a constant). Under the assumptions of Theorem 1, we have m =
5(11) and n = 5(m). We also have that 8 < A™! < O(logn), so Al = 5(1). More generally,
ACtmertesepeatess — O (n2+c4) if ¢1, ¢9, c3, ¢4, C5 are constants.
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2. Expressing the desired quantity as an integral

In this section we express B(s, ¢) as a contour integral in (m 4 n)-dimensional complex space,
then begin to estimate its value using the saddle-point method.

Firstly, notice that B(s, #) is the coefficient of x;" - - - x;," yi‘ -y in the function

H 1_[(1 + X yk)-

j=lk=1
By Cauchy’s coefficient theorem this equals

[T7 Tl (U + x50
B(s t) (27Tl)m+n f f S1+1 .xsm"l‘l n+1 1 d --de dy] . dyn,
m

yl ...y

where each integral is along a simple closed contour enclosing the origin anticlockwise. It will
suffice to take each contour to be a circle; specifically, we will write

Xj= qjeief and  yj = rre'
for 1 <j<mand1<k<n. Also define

Mg = 4q;"k

J 1+quk

for | <j<mand 1 <k<n Then I +x;y=(1+q;r)(1+ AT — 1)), s0
[T7o [T (U gm0

QoY [T, 65 Tz

/ /nj = 1(1+)\jk(€l(9 TP — 1))
exp(i Y. 1s19 +iY p_y tkPr)

B(s,t) =

do dé, )

where 6 = (61, ...,6,,) and ¢ = (¢1, ..., P,). Write B(s,t) = P(s,t)I(s,t) where P(s,t) de-
notes the factor in front of the integral in (1) and I (s, #) denotes the integral. We will choose
the radii g;, ry so that there is no linear term in the logarithm of the integrand of I (s, ) when
expanded for small @, ¢. This gives the equation

sz,kw + i) — Zs,e —Zwk—

j=lk=1
For this to hold for all 8, ¢, we require
Aje=sj (1< j<m),
Mok = tg (lék\n)- 2

In Section 3 we show that (2) has a solution, and determine to sufficient accuracy the various
functions of the radii, such as P(s, t), that we require. In Section 4 we evaluate the integral
I (s, t) within a certain region R defined in (22). Section 5 contains the proof that the integral is
concentrated within the region R.
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3. Locating the saddle-point

In this section we solve (2) and derive some of the consequences of the solution. As with the
whole paper, we work under the assumptions of Theorem 1.

Change variables to {a; };’.1: 1» b }i_, as follows:

1+aj 1+ by
Fp=r——
k 1 —r2py

qj = ; 3)

_ 2.
1 —r=a;

where

)\‘
r=, .
1—A

Equation (2) is slightly underdetermined, which we will exploit to impose an additional con-
dition. If {g;}, {rx} satisfy (2) and ¢ > O is a constant, then {cg,}, {ri/c} also satisfy (2). From
this we can see that, if there is a solution to (2) at all, there is one for which Z;-”zl aj <0and
> k=1 bk >0, and also a solution for which 7" a; > 0 and }"}_ bx < 0. It follows from the
Intermediate Value Theorem that there is a solution for which

m n
nZajszbk, “4)
j=1 k=1
so we will seek a common solution to (2) and (4).
From (3) we find that
)ij/)LZI—i-aj—I-bk—i-ij, 5)
where

ajby(l— r— rzaj — rzbk)

) 6
l+r2ajbk (©)

Z k=
and that Eq. (2) can be rewritten as

n
sj—s 1 Z
- _ by —
4 Arn n];k

1< j<m),
n

m

ty —t 1 Zok
be=—— —Zzgaj— (1<k<n). )
j:

m

Summing (7) over j, k, we find in both cases that

m n
nZaj—i—mZbk:—Z... 8)
j=1 k=1

Equations (4) and (8) together imply that

m n 1
nZaj =mZbk = ——Zee-
j=1 k=1 2

Substituting back into (7), we obtain
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ajZAj(ala‘-'7am7b17"'7b}1)7
bkZ]Bk(al5"'aam5bla""bl’l)’ (9)
for 1 < j<m,1<k<n,where

Sj— S Z jo Zco
Aj(ar,....an,b1,...,b,) = ] —-_J_.+_ ,
/( 1 m»> V1 n) wn . mn
_ Iy —1 Zok Zeeo

Bk(alv--'aamabla~"7bn)

am m 2mn’

Equation (9) suggests an iteration. Start with a;.o) = b,(co) =0 for all j, k, and, for each £ > 0,
define

(+1) (] ¢ 1.0 14
a; =Aj(a1 ,...,a,(,l),b1 ,...,bﬁl)),

£+1 4 ¢
b =By (0, ...,al0, b0, b)), (10)

where Z;, = Z;e.) = Zj.(ail), .. .,a,(f), bil), e b,(le)) and similarly for Z¢ = Zfi) and Zee =
7Y We will show that this iteration converges to a solution of (9) using a standard contraction-
mapping argument. Recall that A~! = O(logn) under the assumptions of Theorem 1 (which
we are adopting throughout). This implies that r> = O (logn). Therefore, within the region A
defined by |a;|, |bx| <n~'/3 for all j, k, we have that

—aZj’k:O(m*]/‘L) and —8Zj’k=o(n71/4),
Baj E)bk

which imply that, in the same region, we have
0Aj _ [om™ (j'=j), BB _ . _sp
—5/4 e =o(n""),
dajr om™) (' #j), dby

B _pmsry,  Br_ o™ &=k,
da; ’ dby o(n™* (K #k).

Therefore, by the mean value theorem, we have for £ > 1 that
max|a;€+1) _ a;‘f)’ + ml?xlbl(ceﬂ) _ bi(f) _ O(m—1/4) max’aﬁ.@) _ aﬁlil)‘
! J

+ o(n_1/4) mlflxib,(f) — b,(f_l)

s

provided {a} "} U (b " U} U (b)) C A.
Applying the iteration once, we have

o'V = (sj—)/0n) and B = (1 — 1)/ ).

Since {aj.o)}, b} and {aj.“}, {b{"} lie inside 1.4, we find by induction that {aj.‘”}, b} lie

in %A for all £. Moreover, the iteration is Cauchy-convergent in the maximum norm, and the

error in stopping at {ai.g)}, {b,(f)} is at most max ; |a§.£) — a;z_1)| + maxk|b,(f) — b,(f_l)l.
’ )

When we carry out this iteration, we find that all the encountered aﬁ.l and b,il) values

are O(n~V/ 2). It helps to know that the following approximation holds in that case:
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Zji = (1 — rz)ajbk — r2ajbk —-r azbk (1 — rz)ajzb,% + 5(n_5/2).
Using the fact that > "7, a =0and ) ;_, b(l) =0, we find that

2 ~
Z;l.) — _r2a§l) Z(bl(cl)) + O(n 1)7
k=1

m
7 =—r2b" Y (@)’ + 0 (n 7).
i=1

z0 =0().

Therefore,
WSS mC s
“ An A —om? +0(n™) a<j<m),
@ _ k! (e — R ~ 5 o
o= S T g —mn (n7%) (A<k<n
Similarly,
n n
ZE‘Z.) = —r2a§2) Z(bl({Z))2 _ r2(1 — r2) (a;Z))Z Z(bl({2))2 n 5(n_3/2),
= k=1
m m ~
20 =P ) PO )+ 00
=1 =
= 2)\2 - 2)\2 ~
22 === @) ) + O (),
Jj=1 k=1

which gives

SO _SiTs (sj —5)C (1 =2X)(s; —)2C

I +A2(1—A)m2n2 A3 = 1)2m2n3
(1=21)RC ~ s
. " 40 / 1<j<
S gy + OO A <i<m,
p® _ k=t (tr — R (1 =201 — )R
7 m 20 = 0m2e2 T 230 = A)2m3n2
(1—=20)RC

~ S i H O™ a<k<n. o

Further iterations make no change to this accuracy, so we have thata; = a§.3) + O(n5/2) and

by = b,?) + 5(n_5/2). We also have that

S _U=206i=90 =D (=)= (5 =)’k =1
= - -

AZ(1 — Mmn AZ(1 — Mm3n AZ(1 — M)mn?
L1 =206 = ) @ =0 | (1=2M)(; —=s)(tx — DR
231 — A)2m2n2 A3(1 — 1)2m2n3

A =20 =)t —DC |~ _
PEIR| ik)2m3n2 +0(n™"). (12)
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A sufficient approximation of A j is given by substituting (11) and (12) into (5). In evaluating
the integral I (s, ¢), the following approximations will be required:

A= Ajr) = A1 — 1) +

(1=22)(sj—s5) (=20 —1) (s;—5)>

m n

(tr —1)? (1—6A+6A2)(s,—s)(tk—t) ey
B A1 —)mn 0(n™"), (13

(1 —6A+61%)(s; — )

i1 = A0 (1 =22 50) = A(1 — 2)(1 — 22) +

_ 2yt — -
+ 4 6’”:;\ )t =) +0(n ), (14)
2ji( =) (1= 64k +625,) = (1 — 1) (1 — 64+ 627) + O (n~1/2). (15)

3.1. Estimating the factor P (s, t)

Let

A= HHA S — ajp) Rk,

j=lk=1

Then

ﬁH(HqJ k) " (1 +qjr)'

jmtik=1 N 4Tk
-1
—1_[]_[<1+q,rk)<]"[q, l"[rk )
j=1k=1 k=1
—1"[1"[(1+q,rk>]"[q, H Y
j=1k=1 j=1

using (2). Therefore the factor P(s, ¢) in front of the integral in (1) is given by

P(s,t) = 2m)~ "M A~

We proceed to estimate A. Writing A jx = A(1 + x ), we have

Aik 3.
AT = A gtk A Y A1 —20)
1 Jk — 1 2 3
Og( (1= ) ik °g<1—x>+2(1—x>x1k 6(1 w2 Ik
5
A1 =31+32%) X5y
_ T xT [0 .
na—n T\ ae

(16)

We know from (2) that A4, = mnX, which implies that x,, = 0, hence the first term on the right
side of (16) does not contribute to A. Now using (5) we can write X jx = a; + by + Z j; and apply
the estimates in (11) and (12) to obtain
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o R c RC (1=20)Ry (1 —20)Cs
— (3 (1 — 1Ry R _ _
(A =2) T exp| mo 4 et e T aaaee? 24A2m?2
(13043 )Ry (1 =31+434%)Cs  ~ 1
s T oeams  TOUTT)). (17

where R; = Z;flzl(sj —s)fand C; = Yoot — 1)" for any £. Note that R, = R and C; = C
To match the formula from the sparse case solved in [2], we will write (17) in terms of bino-

mial coefficients. First, by Stirling’s expansion of the logarithm of the gamma function, we have
that

< N ) B ()Cx+d(1 _x)l—x—d)—N

(x+d)N 2T XN
1-2X d*N (1-2x)d (1-4X)d>
X exp| — - —
24XN 4X 4X 16X2
N (1=2x)d’N (1 —-6X)d*N Lo d°N N d N 1 (18)
24X2 96X3 X4 X2N  X3N3

as N — oo, provided x =x(N), X = X(N) = %x(l —x)andd =d(N) aresuchthat 0 < x < 1,
0 < x +d < 1 and provided that the error term in the above is o(1). From this we infer that

mn \"'C(n\ g () (A1 = p)l=Hy=mn
Ann 1_[1 s ]!_[1 ) (4 A)m+n=D/2 (=12, (m=1)/2
R C 1-2A/m n
xexp| ————————+—
4An  4Am 24A n m
+1—4A R+C +1—2)» R3+C3
16A2 \n?2  m? 24A2 \ n?2  m?

—96A3< + >+0( )). (19)

n3  m3

Putting (17) and (19) together, we find that

P(s, t) = A~ @m)~mtm

A(m+n—1)/2m(n—l)/2n(m—l)/2 mn —1 m n n m
- 2 (mtn+1)/2 ()»mn) 1_[1 (sj> l—[ ( )
j=

t
k=1 V'

e 122 (m RC 1—44(R  C B
X —+—) - — —+ — n .
U204\ ") " 8aZmzn2 1642 \ni2 T m2

(20)

4. Evaluating the integral

Our next task is to evaluate the integral / (s, £) given by

14+ A PO+
I, t)—/ /H, i 1( T Ajkle ))dadd). 21)

exp(i D7y 80 +i D iy tkdr)
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It is convenient to think of 6;, ¢ as points on the unit circle. We wish to define “averages”
of the angles 6;, ¢. To do this cleanly we make the following definitions, as in [1]. Let C be
the ring of real numbers modulo 2w, which we can interpret as points on a circle in the usual
way. Let z be the canonical mapping from C to the real interval (—m, ]. An open half-circle is
C; = (t — 7t/2, t +m/2) C C for some t. Now define

UCN x—(xl,...,xN)eCN|x1,...,xNethorsomete]R}.
Ifx=(x,...,xn) eC(])V then define
i1 u
X = (N;Z(xj))
More generally, if x EC,N then define x =t + (x1 — ¢, ...,xy —t). The function x — Xx is well

defined and continuous for x € CV. . R
Let R denote the set of vector pairs (f, ¢) € C™ x C" such that

10+ @l < (mn)~ /227,

651 <n”VPHE A< <m),

gl <m~FE A<k <), (22)
where 6 i =0; — 6 and qAbk = ¢ — . In this definition, values are considered in C. The constant
¢ is the sufficiently-small value required by Theorem 1.

Let IR/ (s, t) denote the integral I (s, t) restricted to any region R”. In this section, we esti-
mate I/ (s,?) in a certain region R’ 2 R. In Section 5 we will show that the remaining parts
of I(s, t) are negligible. We begin by analyzing the integrand in R, but for future use when we
expand the region to R’ (to be defined in (33)), note that all the approximations we establish for
the integrand in R also hold in the superset of R’ defined by

10 + @1 < 3(mn)~ /2,

6,1 <3072 A< j<m -1,

|é | <2}’l_1/2+38,

el <3m~'2 (1 <k<n—1),

|fnl < 2m™ 124, (23)

l}ef;me 0 = (él, e, ém,l) and $ = (431, e, (f)n,l). Let 7; be the transformation

T1(0,¢,v,5) = (0, ¢$) defined by

v=0+¢, §=0—¢,
together with éj =0; —0(1<j<m—1)and cﬁk =¢r — ¢ (1 <k <n—1). We also define the
1-many transformatlon T} by

T @, ¢,v) = U 710, ¢,v,9).
)

After applying the transformation 77 to IR(s,?), the new integrand is easily seen to be
independent of §, so we can multiply by the range of § and remove it as an independent vari-
able. Therefore, we can continue with an (m + n — 1)-dimensional integral over S such that
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R = T;*(S). More generally, if S” C (—%n, %7‘[)”""”_2 X (=2m,2m] and R" = T;(S"), we
have

Irn (s, t) =2nmn/G(é,$, v)dOdédv, (24)
S//
where G(é, $ v) = F(Ty (é, (i, v, 0)) with F (0, ¢) being the integrand of (21). The factor 2w mn
combines the range of §, which is 47, and the Jacobian of Ty, which is mn /2.

Note that S is defined by the same inequalities (22) as define R. The first inequality is now
[v] < (mn)~1/2+2¢ and the bounds on

m—1 n—1
bn==2 0 and du=—)
j=1 k=1

still apply even though these are no longer variables of integration.
Our main result in this section is the following.

Theorem 2. Under the conditions of Theorem 1, there is a region S’ 2 S such that

172 (m=1)/2 (n=1)/2
G@®O,$,v)d0dpdv = ] T T
/ ©.9.) ¢ dv = (mn) Amn An Am

S/
1 1-2A m+n +1 1+1 R+C
xexpl ———— | —F+—|+—|—+—- ) —+—
P 2 24A n m 4A\m n n m
1—-8A/R C
—— =+ — o(n=?)).
* Teaz <n2+m2>+ (n ))
In the region S, the integrand of (24) can be expanded as

G®..v)= eXP(— oD At +6;+ )

j=lk=1

—i ZZ(Aa + B +0; 4+ dp)’

j=lk=1

) Y As+yp+6;+ ¢t + 0<AZZ|u+éj +¢3k|5>).

j=lk=1 j=lk=1
Here o i, Bjk, and yji are defined by

1

E)»jk(l —Ajr) =A+aji,

1

gkjk(l = Xjr)(1 =24 jk) = Az + Bjk,

1

Stk =0 (1 — 6 jk + 607, ) = Ag+ Vjk (25)
where
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1 1 1
A=§x(1—x), A3=6/\(1—x)(1—2,\), and A4=ﬁ/\(1—x)(1—6x+6x2).

Approximations for o i, Bk, yjx were given in (13)—(15).
4.1. Another change of variables

We now make a second change of variables (9, (3, v)=T2(¢,&,v), where £ = (&1, ..., Em—1)
and & = (§1,...,&,-1), whose purpose is to almost diagonalize the quadratic part of G. The
diagonalization will be completed in the next subsection. The transformation 7> is defined as
follows. For I <j<m—land 1 <k<n—1]1let

0;=¢j+cm, br = & + dp1,
where
1
—m and d:—m
and, for 1 <h <4,

m—1 n—1
h h
=Y ¢t =
j=1 k=1

The Jacobian of the transformation is (mn)~/2. In [1], this transformation was seen to exactly
diagonalize the quadratic part of the integrand in the semiregular case. In the present irregular
case, the diagonalization is no longer exact but still provides useful progress.

By summing the equations 6 j=¢j+cm and ¢A>k = & + dp;, we find that

m—1
m = ml/? Z éj, 71| < ml/zn—1/2+87
j=1
n—1
pr=n'"?>"G. |p1| <n'Pm7VE, (26)
k=1

where the right sides come from the bounds on 6,y and ¢,. This implies that

§=06i+0(n™") A<j<m—1,
=@ +0n"YH (I<k<n—1. 27)

The transformed region of integration is T2_1 (S), but for convenience we will expand it a little
to be the region defined by the inequalities

1< 3n7 12T (1 <j<m—1),

&l < 3m~VAE 1<k <n—1),

|7T]| g ml/Zn—l/Z-H?’

1] <212,

v| < (mn)~ /22 (28)
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We now consider the new integrand E1 = exp(L1) = G o T»>. As in [1], the semiregular parts
of the integrand (those not involving o jx, Bk or y ;i) transform to

—Amnv? — Anmy — Ampy — 3i Asnvmy — 3i Asmvpy + 6 A4 00
—iAsnms —iA3nps — 3i Ascnmymy — 3i Azsdmpi p2 + Agnmg + Agmpg + 5(11_1/2).
(29)

To see the effect of the transformation on the irregulai parts of the integra~nd, write &, = ém —cm
and &, = 6, —dp;. From (26) we can see that £, = O(n~'/?) and &, = O (n~'/2). Thus we have,
forall 1< j<mand1<k<n, ¢+&= O(nY%y and ety +dp; +v=0®n""). Recalling
also that o, Bjk, Vjk = O(n’l/z), we have

m n
DO w46 + o)’
j=lk=1

m n

=Y Y (@ +&) +2 +E) W + e +dpp) + O (n '),
j=1k=1
m n m n
DY B0 +E) =)D Bugj+&) +0(n?),
j=lk=1 j=lk=1
m n

Do v 40440t =0(n""),

j=1k=1
Moreover, the terms on the right sides of the above that involve ¢, or &, contribute only 0 (n’l/ 2)
in total, so we can drop them. Combining this with (29), we have

Li=—Amnv? — Anmy — Ampy — 3i Asnvmy — 3i Asmvpy + 6 Agmr 0o
— i Asnmsy — i Asnps — 3i Asenmymy — 3i Azdmpi py + Agnmtg + Agmpy

m—1n—1

=Y > (@ + 8> + 2 + E) v + T +dp))
j=1k=1
m—1n—1

i) > B +&)+0(n?), (30)

j=1 k=1
4.2. Completing the diagonalization

The quadratic form in E| is the following function of the m +n — 1 variables ¢, &, v:

0= —Amnv? — Anmy — Ampo
m—1n—1
=3 (€ + 80P+ 2 +E W + e +dpy)). 31)
j=1k=1
We will make a third change of variables, (¢, &, v) = T3(0, T, 1), that diagonalizes this quadratic

form, where ¢ = (01, ...,0p—1) and T = (71, ..., T,—1). This is achieved using a slight exten-
sion of [6, Lemma 3.2].
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Lemma 1. Let X and Y be square matrices of the same order, such that X~ exists and all the
eigenvalues of X~'Y are less than 1 in absolute value. Then

-1/2

(IT+yx ) Px+r(+x'y)=x,

where the fractional powers are defined by the binomial expansion.

Note that X 'Y and Y X! have the same eigenvalues, so the eigenvalue condition on X 'Y
applies equally to ¥ X! If we also have that both X and ¥ are symmetric, then

Z(?%)<YX‘>T=Z(?)<X‘)Wuz(—r%)xly

r=0 r=0 r=0

so (I +YX~1)~1/2 is the transpose of (I + X~'Y)~!/2. Let V be the symmetric matrix asso-
ciated with the quadratic form Q. Write V = V3 4 V,q where Vy4 has all off-diagonal entries
equal to zero and matches V' on the diagonal entries, and V, ; has all diagonal entries zero and
matches V on the off-diagonal entries. We will apply Lemma 1 with X = Vg and ¥ = V4.
Note that Vj is invertible and that both V4 and V;q are symmetric. Let 73 be the transformation
given by T3(0, 7, )" = (&, &, v)T = + Vd_l Vnd)_l/z(a, 7, )T . If the eigenvalue condition
of Lemma 1 is satisfied then this transformation diagonalizes the quadratic form Q, keeping the
diagonal entries unchanged.

From the formula for Q we extract the following coefficients, which tell us the diagonal and
off-diagonal entries of V:

[¢7]10 = —An— (1 +20)aju,

(610 = —Am — (1 + 2d)ay,

[UZ]Q = —Amn,

(816,10 = =2c(aji« +ajs)  (J1 # J2),
[$i&k] 0 = —2ajk — 2datjy — 2cayg,

[8k) 6k, 10 = —2d (k) + atsky) (k1 # k2),
[£iv]0 = 20,

[Exv]10 = 204k

Using these equations we find that all off-diagonal entries of Vd_1 V,q are O(n=3/?), except for
the column corresponding to v which has off-diagonal entries of size O(n~1/2). Similarly, the
off-diagonal entries of V_; Vd_1 are all O(n=3/2), except for the row corresponding to v, which
has off-diagonal entries of size 0 (n~1/2). To see that these conditions imply that the eigenvalues
of Vd_1 V4 are less than one, recall that the value of any matrix norm is greater than or equal
to the greatest absolute value of an eigenvalue. The co-norm (maximum row sum of absolute
values) of Vd_1 V418 5(n_1/2), so the eigenvalues are all 5(n_1/2).
We also need to know the Jacobian of the transformation 73.

Lemma 2. Let M be a matrix of order O (m + n) with all eigenvalues uniformly 5(71’1/2). Then

1 ~
det(I + M) = exp(trM -5 tr M? + o(n—1/2)>.
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Proof. The eigenvalue condition ensures that the Taylor series for log(/ + M) converges and
that

det(/ + M) = exp(trlog(l + M)).

Expanding the logarithm and noting that |[tr M"| = O(n="=2/2) forr >3 gives the result. O

Let M = Vd_1 V,q- As noted before, the eigenvalues of M are all 0 (n=Y?) so Lemma 2
applies. Noting that tr(M) = 0 and calculating that tr(M 2y = 0(n~"), we conclude that the
Jacobian of T3 is

—1/2

det((1 + M)~12) = (det(? + M)) "2 =14+ O (n~17?).

To derive T3 explicitly, we can expand ({ + V_1 v, )’1/ 2 while noting that o = O (n'/2te)
for all j, o = O (m'/2%8) for all k, oty = O(mnzs +nm2€) R <mn't2 and C < nm!t2.
This gives

m—1

-1
c(oz]*+oc] *) -2 . Qjp +daje + sk ~, o

j'=1

+ <2A 5 (n- ))v+ 5(n2).

d * * — = * xk’ N
‘L’k—%'k—i-z:( /k-‘r Ol/ +C0lk+0( 2)>§]+Z<d(a§:ma k)+0(n 2))&{/

k=1

02973 ~ _ ~ _
+(ﬁ+0(n l)>v+0(n 2),

m—1
o jix _2 Ok -2 (o1
= 0 9
M ) 20 3 e ) CR e
for 1 < ]<m—ll<k<n—l

The transformation 75 perturbs the region of integration in an irregular fashion that we must
bound. From the explicit form of T3 above, we have

m—1 n—1
oj=¢i+ Y 0 )y +> 0 e+ 0n W+ 0(n ) =¢+0(n"),

j'=1 k=1
n—1 N N N
T =& + Z 3/2 { + Z 0(n73/2)§k/ + 0(n7]/2)v + O(nfz) =&+ O(nfl)
K=
forl<j<m—1,1<k<n—1,s00,7 are only slightly different from ¢, &.

For p. versus v we have
p=v+0n""/A)+ O (m™ T/ A) =v +o((mn)”P),

where the second step requires our assumptions m = 0(A%n't8) and n = 0(AZm'*#). This shows
that the bound |v| < (mn)~'/2+2¢ is adequately covered by || < 2(mn)~1/2+2¢
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For 1 < h <4, define

n—1

m—1
h h
=Y o', =)
j=1 k=1

2n—1/2+e —1/2+en1/2

From (28), we see that |71 | < m!/ and |p1| <m are the remaining constraints
that define the region of integration. We next apply these constraints to bound w| and v;. From
the explicit form of 73, we have

m—1m—1

e a ~
j=1 j/=1 "
A @i+ da s+ cag (%
J J* *, ~ -2 J* N -1 0 -1
+;k§< o +O0(n ))sk+j§(2An+0(n )>v+0(n )
- Coxx 12 —1/2+4¢ A —1/24e,1/2 | Qex
=m+ o mn o " Y
S, =D 5
(L em =) Y b+ =2 3 aygy + 0(n')
k=1 J'=1
-1 m-1 ~
i+ SO Y apty + O()
=1
— +O(A_1mn_1+28)
=m_|_0(m1/2n—1/2+58/2)_ 32)

To derive the above we have used 1+ ¢(m — 1) = m!/? and the bounds we have established on the
various variables. For the last step, we need the assumption m = 0(A?n'*¢), which implies that
A7 mn 1428 = o(m!/2n=1/245¢/2)  Since our region of integration has 71| < m!'/2n=1/2+¢ we
see that this implies the bound |p1| < m!/?n~1/2+3¢ By a parallel argument, we have

vy = p1 +o(m /22 12)
which implies |vi| < n!/2m=1/2+3¢_Putting together all the bounds we have derived, we see that
7,711, 1(S) canM,
where
Q= {|Uj| <2n—1/2+s’j =1,...,m— 1} N {|Tk| <2m_1/2+8,k: Lin— 1}
N {1l < 2(mn)~1/2+2),
M= {lp] <m' P72 A Ly < P 23E L
Now define
§'=1n(1:(QNM)),
K= (33)
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We have proved that S’ 2 S, so it is valid to take S’ to be the region required by Theorem 2.
Also notice that R’ is contained in the region defined by the inequalities (23). As we forecast at
that time, our estimates of the integrand have been valid inside this expanded region. It remains
to apply the transformatlon T ! to the integrand (30) so that we have it in terms of (o, T, 1).
The explicit form of T3 is similar to the explicit form for 73, namely:

m—1 n—1

clajs+aiy) ~, _ i +daj,+cay  ~, _
§j=0j—z<#+0(” 2))01/_2:( ’ 21;; } +0( 2))Tk
j'=1 k=1
% 5,1 5 (=2
- (52 + 067t B02),
_ s ok — dotju + Cotg O(n=2 = d(tk + ) O(n2
j=1 k=1

vzﬂ_§<i+5(n—2)>o-_z( il +5(n—2)>fk+5(n—l)u
= 2Amn J P 2Amn ’

for 1 <j<m—1,1<k<n—1. Inaddition to the relationships between the old and new
Varlables that we proved before, we can note that 75 = uy + O(n 12y po = vy + O(n 172y,
w3 =p3+ 00, p3=v3+ 0", s =pa+ O(n™>?), and ps = vs + O(n %),

The quadratic part of L1, which we called Q in (31), loses its off-diagonal parts according to
our design of 73. Thus, what remains is

m—1 n—1
—Amn/JL2 — Z(An +(1+ Zc)otj*)aj2 — Z(Am +(1+ 2d)ot*k)7k2
Jj=1 k=1
m—1 n—1
_—Amnu — Anuy — Amvy — qu*g Za*kfk +0( —1/2).
j=1 k=1

Next consider the cubic terms of L. These are

—3iAsnvmy — 3iAsmvpy — i Asnmy — i Asnps

m—1n—1

—3iAsenmimy = 3iAsdnpipy =i ) ) BinCj + &)’
j=1k=1

We calculate the following in @ N M:

1
3iA3un S —12
—3iAsnvmy = —3iAsnuun + 2 Am (Z“/*UJ ;a*m +0( /)
=1
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3 A3 m—1
—iAsnms = —iAznusz + —( Z clojy + ajr*)ojzaj/

2A “
J. =l
m—1n—1
+ Z Z(Oljk +daj.+ coz*k)ajzrk> + O(nfl/z),
j=1 k=1
3i As2mpy " ~
—3iAszcnmymy = —3iAzcnpu o + 32714'[& Z ajx0;j + O(n_1/2), (34)
j=1
m—1n—1 m—1n—1
—i Y Y Bk HE P ==i )Y Bl + )+ 0(n'?), (35)
j=1 k=1 j=1 k=1

and the remaining cubic terms are each parallel to one of those. The proof of (34) is similar to
the proof of (32).
Finally we come to the quartic part of E1, which is

6A4T2pr + Asnmty + Aamps = 6Aspiovy + Asnpis + Agmvg + 5(n*1/2).

In summary, the value of the integrand for (o, T, ) € QN M is exp(La + O (n~'/2)), where

m—1 n—1
L, = —Amn,u — Anpy — Amvy — Z a]*o Za*kfk +6A4u2V7
j=1 k=1
+ Agnpg + Agmvg — i Asnpus — i Asmvz — 3iAscni iy — 3i Azsdmvivy
m—1 n—1
—3iAsnppy —3iAsmuvy —i Y Bju0d =iy But]
j=1 k=1
m—1n—1
+i Z g”/oja o+ Z hkk/rkrk, +1i Z Z jkG/‘L'k +vjko; ‘L'k) (36)
Ji'= k,k'=1 j=1k=1
with
gjj = (( +em+ C2m2)Olj* + cmajry) = O(nfl/”g),
hw = (( +dn + d*n?*)o + dnag) = O (m~1121¢),
3
ujp == (najk + (1+dn)ajs + cnag) =3B = O (m™ /242 4 7 1/24%),
3

(majk + (14 cm)aa +dmaji) — 3Bk = O (m™ /212 g~ 1/2H2e),
Note that the O () estimates in the last four lines are uniform over j, j/, k, k'.
4.3. Estimating the main part of the integral
Define E; = exp(Ljy). We have shown that the value of the integrand in Q N M is E| =

E>(1 + O(n~'/2)). Denote the complement of the region M by M¢. We can approximate our
integral as follows:
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/Elz / Ey+ O (n™'?) / | Ex|

oNM onM onM

- / E2+5(n*1/2)/|E2|

QNM Q

:sz+0(1) / |E2|+5(n’1/2)/|E2|. 37)
o onme o

It suffices to estimate the value of each integral in (37).
We first compute the integral of E» over Q. We proceed in three stages, starting with integra-
tion with respect to . For the latter, we can use the formula

—1/2+2¢ i, 12 132
s = 2s) oo o)

—(mn)—1/2+2s
provided B = o(A(mn)'/>t2¢). In our case, B = 3A3(nju2 + mvs), which is small enough be-
cause of the assumptions m = 0(A%Zn!*%) and n = 0(AZm!1¢). Therefore, integration over u
contributes

1/2 _9A2( + )2
n 3(nuo +mv; .
o . 38
<Amn> exp( 4Amn + (n )> (38)

The second step is to integrate with respect to ¢ the integrand

(mn)

m—1
9A2n
eXP( Anﬂz—za,* o — 3 M%—1A3HM3—3IA3CHIL1M2

m—1n—1

—zZ,BJ*o +1i Z gj,/UJa,—HZZ JkU/Tk —l—v,ka Tk)
j.j'=1 j=1 k=1
943
<6A4—ﬁ),u2v2+A4nu4+0( ). (39)

This is accomplished by an appeal to Theorem 4, presented in Appendix A. In the terminology

of that theorem, we have N =m — 1, §(N) = 0(n~ 1), ¢/ = %8, e = %8, " =3¢, & =6¢, and

8(N) =& + o(1) is defined by 2n~1/2t¢ = N~1/2+¢ Fuyrthermore,

N An R
A:m—l’ aj:—ozj*—f—<6A4——>v2+12vjkrk,
N iAsn A . .
B; =1 mﬂj*, Cjjr=-3iAscn+igjj,
A Ayn A 9A%n
Ej=——  Fi=—73—-
m—1 4Am
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We can take A = %, and calculate that

N N 2
3 R 1 N m 3A4 9A3 (., —1
- E- _ Fiy=— 0 ’
4A2N]Z; ]+4A2N2 Zl 7 n <4A2 16A3 +0(™)
= JJ'=
N N N
15 ~n 3 D . 1 C 0 C
- B+ — B;Cjjr + Cirr
16A3NZ PUBAINE S T T 16A3NS Z— v
j=1 jJj'=1 JJhi"=1
3A%m ~/ 1
~ S +0(n™"),
N 1 1 R
. 2L - )’
2AN ;a] + 4AA2N2 jz;a/ = 2A}’la** + 4A2n2 jz;(aj*)

34, 942 i ~ 1
R Tt g D 067

k=1

2

. 34Zm » (1-24)°m
Z=27 =exp< S A3, +O0(n )> = 0(1)exp<2—>.

4An “40)

Applying Theorem 4, we see that ®, = O(n~'/2), and so integration with respect to o con-
tributes a t-free factor

"2 (344 15A3 1
— exp| —| —5 — - —«
An P\ \3a2 " 1643 ) ~ 240 ™

1 m—1 N
+ s D @)+ 07+ 0(n3/4Zl)).
j=1

(41)

By the conditions of Theorem 1, Z; < n'/3, so O(n 12y y om=3/4z)) = O(n 172y = o(1) as
required by Theorem 4.

Finally, we need to integrate over t. Collecting the remaining terms from (36), and the terms
involving t from (38) and (40), we have an integrand equal to

3A4m  9A3m 9Am
exp| —Amvy + n 4A2 V) — TAn vy + Agmvg — i Azmvz — 3i Azdmvyvg

_Za*”k _’Zﬂ*kfk by Zv*ktk-H Z hiw g + O(n 1/2)>.
k=1

In the terminology of Theorem 4, N =n — 1, §(N) = 5(n_1/2), g = %s, e = %8, " =3e,
¢ =4¢,and §(N) = ¢ + o(1) is defined by 2m~1/2+e = N~1/2+¢ Fyrthermore

A Am . 3Agm  9A3m

= ) ap = - — Ok,
n—1 KT TAn T aAZ, O

b= _iAsm j

— ——Bus  Crr = —3iAzdm +ilyyp,
n—1 n—1
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B — Aqm n 9A§m
e a o = A
A i

k —ZAnU*k-

We can take A = % again and calculate that

N N 2
3 R 1 R n(3A4 942 ~
. B —— Y Fw=—(2-2)+00n"),
4A2N1; k+4A2N2ka_:l H m<4A2 i6a3) T ()
15 & 3
= B + —— Z é‘ékk/ Z Ckk’Ckk”
3 Z k 32 I 16A3N3
16A3N = BAIN2 4| 16A3N3 ot
3A%n ~
3 -1
= gm0
N N 1
N AD
2AN; 4A2Nzk;“k_ 2am G 20
9A3 3As  ~,
— 342 0omV,
s43 "oz TOUTT)

. 3A%n (1—21)%n
Z =7, =exp 8A3 +0( ) =0(1)exp “aam )

We again find that ®; = O (n’l/ 2y, Including the contributions from (38) and (41), we obtain

/ - 12 ;o \m=1/2 ;.\ (1=1)/2
E)= — —
Amn An Am
Q
9A§+3A4+ m ) (34 1543
XexXp|\ ——= + — -+ =) — -
PAT8a3 T242 T\ T J\4a2 T 1643
1 1 (R
N (2Am + 2An)a** Hrye ;(“*")
—1
+LmZ<a-*>2+5(n-‘/2)zz : (42)
4A2n2 et !

Using (13) and the conditions of Theorem 1, we calculate that

__l R ¢ 1/2
ox = 2(n+m)+0( )

m—1

Z(a,*ﬂ —21)%R + 0 (n*/?),

Z(a*k)z = i(l —20)%C + 0(n*?),
k=1

5(n71/2)Z2 = 5(n71/2)n2“/5 = O(rfb).
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Substituting these values into (42) together with the actual values of A, A3, As4, we conclude that

/ x N2/ 7 \m=D2 o\ 6=D)2
E, = — —
Amn An Am
Q
1 1-2A/m . n n 1 /1 n 1 R n C
X exp| —= — — 4+ — ——+-)—+—
P 2 24A n m 4A\m n n m

1-8A(R C
——(=+=)+0o@r™)). 43
+ e <n2+m2>+ (n )) (43)

‘We next infer a estimate of f o | E>|. The calculation that leads to (42) remains valid if we set
all the values A3, B, g;j’> hxx'» ujr and vji to zero, which is the same as replacing L; by its
real part. Since | E>| = exp(Re(L3)), this gives

/E 943 15A§ mon\ L a /E
| 2|_exp 8A3 16A3 n m 0() 2
0
(1—21)2 5n  S5m
= ~ = 1+ =+= 1 E
exp( " (+6 +6>+0())/2
0

o) [ £ (44)
Q

under the assumptions of Theorem 1. The third term of (37) can now be identified:

—]/2 /|E2|_ ]/2) /Ezzo(nfb)/Ez’ (45)

0 Qo

where, as always, we suppose that ¢ is sufficiently small.
Finally, we consider the second term of (37), namely

/ |E>],

onMe

which we will bound as a fraction of f o |E2| using a statistical technique. The following is a
well-known result of Hoeffding [3].

Lemma 3. Let X1, X»,..., Xy be independent random variables such that EX; = 0 and
| Xi| < M foralli. Then, for any t > 0,

al 2
t
Pmb(;Xi >t> s eXp(_zNM2>'
Now consider |E;| = exp(Re(L2)). Write M = M| N M, where

My ={lp| <m'Pa 2L and . Mo = {vi| < n'Pm12HE)

For fixed values of u and o, Re(L,) separates over 71, 72, ..., T,—1 and therefore, apart from
normalization, it is the joint density of independent random variables X1, X5, ..., X,,—1 which
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satisfy I X; = 0 (by symmetry) and |Xj| < 2m~!/2%¢ (by the definition of Q). By Lemma 3,
the fraction of the integral over = (for fixed u,o) that has vy > n!/ 2 —1/243¢ i5 at most
exp(—m™* /2). By symmetry, the same bound holds for v; < —n'/2m~1/23¢_Since these bounds
are independent of 1 and o, we have

/ |Ea| < 2exp(—m* /2) / IEs).
onM; Q

By the same argument,

/ |E2|<2€XP(—”48/2)/|E2|-
QNS Q

Therefore we have in total that

|E2| < 2(exp(—m™* /2) + exp(—n* /2)) / |E2] < O(n™?) / Es, (46)
onNMe Q 0
as for (45). Applying (37) with (43), (45) and (46), we find that f onM E| is given by (43).

Multiplying by the Jacobians of the transformations 75 and 73, we find that Theorem 2 is proved
for &’ given by (33).

5. Bounding the remainder of the integral

In the previous section, we estimated the value of the integral I/ (s, t), which is the same as
I (s, t) except that it is restricted to a certain region R’ 2 R (see (21)-(23)). In this section, we
extend this to an estimate of /(s, ¢) by showing that the remainder of the region of integration
contributes negligibly.

Precisely, we show the following.

Theorem 3. Let F (0, @) be the integrand of 1 (s, t) as defined in (21). Then, under the conditions
of Theorem 1,

/|F(0,¢)|d0d¢= o(n*‘)/F(o,qs)dadqs.
R¢ R

For1<j<m, 1<k<n,let Ay =A+aj = %Ajk(l — Ajr) (recall (25)), and define
Apin =minj; Ajp = A + O(n~1/%). We begin with two technical lemmas whose proofs are
omitted.

Lemma 4.

[F©@. )| =[] six®;+a0

j=lk=1

where

fix(@) = \/1 —4A (1 —cosz).
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Moreover, for all real z,

1
0< fir(a) < eXp(—Aij2 + EAij4>.

Lemma 5. For all ¢ > 0,

87/75
7
/ exp(c(—x2 + §x4>> dx </m/cexp(3/c).
—87/75

Proof of Theorem 3. Our approach will be to bound ['|F (8, ¢)| over a variety of regions whose
union covers R¢. To make the comparison of these bounds with fR, F (0, ¢) easier, we note that

/J«a¢ywd¢=eq¢o@f+4f»m=wmxooﬁs+n%»h, 47)
R/

where

1/2 m 1/2 n 1/2
s T T

Iop= [ [ :

° <A--> .1<Aj-) kl(A'k>

J

. m/2 T n/2
L=(— = .
An Am

To see this, expand

Ge %
Aje=An+aje —Anexp<A—n — 5427 _|_>
and similarly for A4k, and compare the result to Theorem 2 using the assumptions of Theorem 1.
It may help to recall the calculation following (42).

Take ¥ = /300 and define xq, x1, ..., X299 by x; = 2€x. For any £, let S;(£) be the set of
(0, ¢) suchthat 6; € [x; —k, x¢ 4« ] for atleast km /m values of j and ¢y & [—x¢ — 2k, —x¢+2k]
for at least n® values of k. For (0, ¢) € S1(£), 6; + ¢ ¢ [—«, k] for at least kmn® /7 pairs (j, k)
so, by Lemma 4, |F (0, ¢)| < exp(—c| Apinmn®) for some ¢ > 0 which is independent of €.

Next define S>(£) to be the set of (6, ¢) such that 6; € [x; — «, x¢ + «] for at least km /7
values of j, ¢r € [—x¢ — 2k, —x¢ + 2k] for at least n — n® values of k and 0; & [x¢ — 3k, x¢ + 3k]
for at least m® values of j. By the same argument with the roles of @ and ¢ reversed, |F (0, ¢)| <
exp(—ca Aminm®n) for some ¢, > 0 independent of £ when (8, ¢) € S>(£).

Now define R (£) to be the set of pairs (8, ¢) such that §; € [x; — 3k, x; + 3k ] for at least
m — m?® values of j, and ¢ € [—x; — 3k, —x¢ + 3«] for at least n — n® values of k. By the
pigeonhole principle, for any 0 there is some € such that [x; — «, x¢ + «] contains at least xm /7
values of 6. Therefore,

299 ¢ 299
(U&m)guwﬂw&my
=0

=0

Since the total volume of (|, R1(£)) is at most (2m)™ ", we find that for some c3 > 0,



56 E.R. Canfield et al. / Journal of Combinatorial Theory, Series A 115 (2008) 32—-66

|F(0, ¢)| dode < 2m)"t" (exp(—C3Aminmn€) + exp(—C3Aminm8n))
U R1@©)°
<e 1. (48)

We are left with (6, @) € |, R1(€). If we subtract x; from each 6 ; and add x; to each ¢ the
integrand F (@, ¢) is unchanged, so we can assume for convenience that £ = 0 and that (0, ¢) €
R1 = TR1(0). The bounds we obtain on parts of the integral we seek to reject will be at least
1/300 of the total and thus be of the right order of magnitude. We will not mention this point
again.

For a given @, partition {1, 2, ..., m} into sets Jo = Jo(@), J;1 = J1(#) and J> = J>(0), con-
taining the indices j such that |0;| <3k, 3k < |0;| < 15« and |6;]| > 15k, respectively. Similarly
partition {1,2,...,n} into Ko = Ko(¢), K1 = K1(¢) and K» = K»(¢). The value of |F (0, ¢)|
can now be bounded using

FikO; + én)
exp(—Amin(0; + ¢0)% + 15 Amin(0; + 1)) if (j.k) € (JoU J1) x (Ko UK)),

S VT = FAmin (1 — cos(12k)) < e~ Anin/64 if (j, k) € (Jo x K2) U (J2 x Ko),
1 otherwise.

Let I,(m», ny) be the contribution to le |F (0, ¢)| of those (8, ¢) with | Jo| =my and | K2 | = n5.
Recall that | Jy| > m — m? and |Ko| > n — n®. We have

I(my, ny) < (m ) (n )(27T)mz+"2
noy nyp

1 1
x eXp<—aAmm(n —n®)my — aAmin(m - ms)ﬂz) I} (m2, ny), (49)
where
15« 15« {
/ /
I3(ma, ) = / / exp(—AmmZ O+ 607 + 75 Amin ) (] +¢>k)4> de'd¢’,
15k —15¢ ik Jjk

and the primes denote restriction to j € Jo U J; and k € Ko U K{. Write m’ = m — my and
n' =n—n; and define 8" = (m)~' Y, 0;, 6, =0, — 0 for je JyU 1, ¢ = ()" T} .
dr=¢r—¢ forke KoUK,V =¢ +8 and 8 =6  — ¢. Change variables from (8', ¢') to
{é/ | j € 3} U{de | k € K3} U{V, 8'}, where J3 is some subset of m’ — 1 elements of Jo U J; and
K3 is some subset of n’ — 1 elements of Ky U K. From Section 4 we know that the Jacobian of
this transformation is m’n’/2. The integrand of ] can now be bounded using

SO +07 =0 G m' S G 4 mnv>
jk Jj k
and
S0+ 0t <2t Y6 421! S ¢+ 27 v
jk J k

The latter follows from the inequality (x + y + 2 < 27(x* + y* + %) valid for all x, y, z.
Therefore,
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30« 30k 30«

0(1)// /exp(Ammn g(9)+AmmmZg<¢k>

—30k —30« —30k

15 (ma, n2) <

+ Aminm/n/g(v/)> déje13 ddrer, dv,

where g(z) = 224 %14. Since g(z) < 0 for |z| < 30k, and we only need an upper bound, we
can restrict the summations in the integrand to j € J3 and k € K3. The integral now separates
into m’ +n’ — 1 one-dimensional integrals and Lemma 5 (by monotonicity) gives that

T (m'+n')/2

2 (m'4+n'—1)/2 n ’
: (m/) n' /2 l(n/)m /2—1

X exp(O (m’/(Aminn’) + n’/(Aminm’))).
Applying (47) and (49), we find that

Z le(mz,nz)— (emcadm 4 emcadm) (50)

mpy=0 ny=0
ma+ny>1

for some ¢4 > 0.
We have now bounded contributions to the integral of |F (8, ¢)| from everywhere outside the
region

X ={®0.9)|10;],1¢x| <15« for 1 < j <m, 1 <k <n}.
By Lemma 4, we have for (0, ¢) € Ccmn (which includes X) that

m n R . 1 m n R .
|F@6,9)| <exp(—ZZA,-k(9,- et oD D A +¢k+v>4),

j=lk=1 j=lk=1

where 0 =0; — 0, dp = dx — ¢ and v =0 + ¢. As before, the integrand is independent of
8 =0 — ¢ and our notation will tend to ignore & for that reason; for our bounds it will suffice to
remember that § has a bounded range.

We proceed by exactly diagonalizing the (m + n 4 1)-dimensional quadratic form. Since

ZT:I éj = i1 ¢A5k =0, we have

ZZA]/{(G +¢k+‘))2 ZAJOQ +2A0k¢k+A..l}
j=lk=1
+2ZZaﬂ(9 ¢k+2u2a,.9 +2vZa.k¢k

j=lk=1

This is almost diagonal, because o j; = O(n_l/ 2), and we can correct it with the slight addi-
tional transformation (I + X~'Y)~!/2 described by Lemma 1, where X is a diagonal matrix
with dlagonal entries Aj,, Ao and A,,. The matrix ¥ has zero diagonal and other entries of
magnitude O(n1/%) apart from the row and column indexed by v, which have entries of mag-
nitude O(nl/ 2). By the same argument as used in Section 4.2, all eigenvalues of X 'Y have
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magnitude 0 (n—1/2), so the transformation is well defined. The new variables {f} it {@x} and ©
are related to the old by

12,4

GV YU ST LR U ANED G @ Bl (/2 VR RS M) L

We will keep the variable § as a variable of integration but, as noted before, our notation will
generally ignore it.

More explicitly, for some dj, ..., dy, di, e, d,’l = 5(n_3/2), we have uniformly over j =
1,...,m,k=1,...,nthat

j=1 g=1
m . n -
v=>04+Y"did+ Y digi+ O(n")D. (51)
j=1 k=1

NAote that the expressions O() in (51) represent values that depend on m,n, s, t but not on
{0}, (@}, D

The region of integration X is (m-+n)-dimensional. In place of the variables (0, ¢) we can use
(0, . v,8) by applying the identities 6,, = — > ! f; and ¢, = Z}Z—{ bx. (Recall that 6 and
¢ do not include 6,, and ¢,, ) The additional transformatlon (51) maps the two Just mentloned
identities into identities that define 9, and ¢y in terms of (17 @, V), where P = (191, e Omet)
and ¢ = (@1, ..., Pn—1). These have the form

m—1 —
1§m - _ Z(l + Z —1/2 ng + 5(}11/2){),
j=1 k=1
m—1 N n—1 N N
Gn=>_ 0 ') = (1+0(n""))gx+ O(n'?)0. (52)
j=1 k=1

Therefore, we can now integrate over (13, @, v, 8). The Jacobian of the transformation from (8, ¢)
to (é, (i v, §) is mn/2, as in Section 4. The Jacobian of the transformation T4(1§, @, V) = (é, (i V)
defined by (51) can be seen to be 1 + 9] (n=1/%) by Lemma 2, using the fact that the co-norm
of the matrix of partial derivatives is 0 (n—'/2). This matrix has order m +n — 1 and can be
obtained by substituting (52) into (51).

The transformation T4 changes the region of integration only by a factor 1+ O(n~"/%) in each
direction, since the inverse of (51) has exactly the same form except that the constants {d;}, {d,/(},
while still of magnitude O(n3/?), may be different. Therefore, the image of region X’ lies inside
the region

YV={@. 6.9 |19 1¢| <31k A< j<m, 1<k<n), [0 <31}

We next bound the value of the integrand in ). By repeated application of the inequality
xy < %xz + %yz, we find that
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1 A A 7( A n R )
EZZAjk(9/+¢k+v)4<g(ZA/ol??"'ZAokwg"'Aoové‘ )

j=lk=1 j=1 k=1

where we have chosen % as a convenient value greater than %. Now define h(z) = —z°> + %24.
Then, for (1§, @, v)e),

|F0.9)| < exp(ZAj.h(f?j) + ) Awh(@) + A..h(ﬁ))

j=1 k=1
m—1 n—1
< exp( Z Ajoh(éj) + Z Aokh(Pr) + A..h(\'))) (53)
j=1 k=1
m—1 A n—1
= exp(Aaeh (D) [ | exp(Ajeh(@))) [ | exp(Aech(@0)), (54)

j=1 k=1

where the second line holds because /(z) < 0 for |z]| < 31«.
Define

- N _
WOZ{(#ﬂ(p’U)Ey‘|ﬂ]|<—n 1/2+8(1<J<m_1)’

\S)

1 1
6l < 5m~ 2 A<k <n = 1), 9] < E(mn)‘“”%},
Wl = y - W(),
m—1 n—1
Wh = {(1‘},(?), v)ey ‘ Zdjﬂj +Zdl/<‘/3k <n_5/4},
Jj=1 k=1

Also define similar regions W, W}, W, by omitting the variables 91, ¢ instead of Dy, @p start-

ing at (53). Using (51), we see that T4, and the corresponding transformation that omits t and
@1, map R to a superset of Wo N W, N W] N W Therefore, X — R is mapped to a subset of
Wi U (Wo —Wh) UW, U (W, — W) and it will suffice to find a tight bound on the integral in

each of the four latter regions. Denoting the right side of (54) by Fo(®, @, V), Lemma 5 gives

/Fo(é,qs, ) dd dp dv =exp(O (m® +n®))Io. (55)
y
Also note that
31k
/ exp(ch(z)) = O(1) exp(ch(zo)) (56)

20

for ¢, zo > 0 and zo = 0(1), since h(z) < h(zp) for zo < z < 31«. By applying (56) to each of the
factors of (54) in turn,

/ Fo(B, ¢, 0)d# dgdv = O (e~ A" 4 e~cA™ ) [ (57)
Wi
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for some ¢ > 0 and so, by (55) and (57),

/ FO('}, @, 1')) d{} d{bd]’) = exp(o(m€ +n€))lo
Wo

Applying Lemma 3 twice, once to the variables d11§1, e dm_le?m_l, d{(,?)l, e dLl(,?),,_l and

n

once to their negatives, using M = 5(n_2), N=m+n—2andt=n">* we find that

/ F0(1§,(o,1'))d1§d¢df):0(@‘”1/4)/Fo(ﬁ,(ﬁ, D) dd d dv
W()—Wz W(J
=0(e"" ). (58)

Finally, parallel computations give the same bounds on the integrals over W, and W, — Wj.

We have now bounded [ |F (6, ¢)| in regions that together cover the complement of R. Col-
lecting these bounds from (48), (50), (57), (58), and the above-mentioned analogues of (57) and
(58), we conclude that

/|F(05 ¢)| de d¢ = O(E—C7Am25 + e_C7An2s)IO
Re

for some ¢7 > 0, which implies the theorem by (47). O
Appendix A. Estimating an integral

In this appendix we estimate the value of a certain multi-dimensional integral. A similar in-
tegral appeared in [7] and variations of it appeared in [4-6]. However, none of the previously
published variations meet our present requirements entirely. We will meet them here, and also
introduce a new method of proof that gives a better error term.

It is intended that this appendix be notationally independent of the rest of the paper. We have
used new symbols where possible, but even in the few remaining exceptions, assumptions about
the values of variables stated earlier do not apply here.

Theorem 4. Let &', ", &"", g, A be constants such that 0 <¢’ <¢&”’ <&",6>0,and 0 < A < 1.
The following is true lf &" and & are sufficiently small.
Let A = A(N) be a real-valued functlon such that A(N) = .Q(N_g) Let aj = aj(N),

B] = B](N), C]k = ]k(N) Ej = E (N) Fk = F]k(N) and J = J (N) be complex-
valued functions (1 < j,k < N) such that Bj, Cjx, Ej, Fjx = O(N%), a; = O(N'/**%), and
fj = 0(N71/2+5), uniformly over 1 < j, k < N. Suppose that

f(z):exp( ANZZ —i—Za,z +NZB,z + Z Cirzjzi

Jj.k=1
—i—NZEjzz}—i- Z ﬁij?Z;%—i-ZJAij +5(Z)>
j=1 jk=1 j=1

is integrable for z = (21,22, ...,2n) € Uy and 6 (N) = maxzeyy 16(2)| = o(1), where
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Un={z SRY |1z < N"V2¥ for 1 < j < N},

where & = £(N) satisfies " < 2& < &". Then, provided the O() term in the following converges
fo zero,

fﬂmm=(7
A
Uy

N/2
N) exp(O1 + 02 + O((N4 +8(N))2)),

where
1 N 1 N 15 N N
O = — a = 62 = B2 B.C k
2ANJ.§ ’ 4A2N221 / 16A3NZ 7 gA3N? ,-%::1 o
1 N 3 J |
= CikCje + — k>
16A3N3 kZ_ e ZNZ: T 4A2N2 X_: !
Jik, =1 j=1 Jok=1

1 N 3 N 1 N
+—— (CAl"F&k)ﬁ'k"‘A— éj—FA— CA’kj
4A3N3 jX_: ! ! 4A2NJZ_} SRV EIE jg_:l S
1 N
16A4N*

1 j. k=1

Im(a;)* +

k=1
N 3
(@j +2a)CiiCje + a; +a)B;Cji,
kz Jk&j 8A4N3Z J J“J
N
1

N N
3 A A 1 N o
— E Im(B;) Im(Cjx) + m E Im(Cjk)Im(ng))

3
BA°N Jk=1 J.k£=1

Proof. Our method of proof will be integration over one variable at a time. This method is
conceptually simple but technically challenging. Assistance from a computer-algebra system is
recommended.

Let Hj, j,,....j, be a functions of N for each 1 < ji, j2,..., jx < N and let py, p2,..., pi be
non-negative integers. Let 1 < j < N + 1. Define the generalized moment

ni(Hj il p1,.... p)(2) = Z Hj . . ij?ll"'ZZk,

where the summation is over

{Gr e o | Uil =k 1< i < j = 1if pi =0, j < ji <N if p; > 0}.

We will customarily omit the argument z as it will be clear from the context. Note that the indices
Jj1s ..., jk are reserved to this notation and always index the position their name suggests; for
example
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njlaj,|3,0)= Z ajzz%.
JShEN
1< jp<j-1
We also need the defective moment W}(Hjl,...,.ik | p1, p2,..., px) which is the same as
nj(Hj, . j. | p1, p2,..., pr) except that the index value j is forbidden; that is, the condition
J1s ..., jk 7~ j is added to the domain of summation.
Some properties of these moments that we require are listed below. Assume that z € Uy.
Then

nj(Hjy...jo | P1o - pi)| <max|Hj, g | NFHEZEO 01400, (59)
J Jlses Jk Jlsees Jk

mHjy,..i | Pl pk) =0 if p; =0 for any i, (60)
nN+1(Hjy . | p1y..., pk) =0 if p; > 0 forany i, (61)

ni(Hjy, i | Pty pr)
=0 (Hjy,..jc | P15 PK)
+ Z Zf" 77;'(Hjlw.,].i—lvj’ji,‘..;jk—l | Pl eees Picls Pitls vy DE)s ©2)
ilpi>0
77j"'_l(I-I./'l ...... /'k|p1,...,pk)
=0 (Hjy,.jc | P15 PR)
= D Wit | P Pits Pitts o PO)- 63)
i|pi=0

The last two equalities require j < N.

The product of generalized moments 7, (P}, .. j. | p1,.... pk) and n;(Qj, .. j, 1 q1,-...q¢)
can be written as a sum of generalized moments. Define @ to be the set of injections
¢:{1,2,..., 8} > {1,2,...,k+ £} such that (a) p({1,2, ..., £H U{1,2, ..., k}={1,2,...,|¢|}
for some integer |¢| depending on ¢, (b) for 1 <i < j <L, if ¢ (i), d(j) > k then ¢ (i) < ¢ (),
and (c) for 1 <i < ¥, gi =04 (¢p(i) > kor py;) =0). For ¢ € @ and 1 <i < |¢], define
ri = pi + 441, Where the first term is omitted if i > k and the second term is omitted if i is
not in the range of ¢. Then

i (Pjy e 1Py PO (Qjy, e 1, -5 qe)

= 0Py i Qoo | T1s -+ T1g1)- (64)
ped

For example,

nj(@j, i 10,28, |3) =nj(aj,,1»,Bj10,2,3) +nj(aj, 1,85, 10,5),
where the two terms correspond to the injections ¢ (1) = 3 and ¢ (1) = 2. Exactly the same
formula holds for defective moments.
For 1 < j < N + 1, define
Fj(2) =n;(—AN +a;, 12) +nj(B; N +Cjj, 13) +n;(Ej N+ Fjyjy 14 +n0;(Jj, | 1)
05 (Ci 12,1 +0j(Fipjy 12,2)+0;(T0 10) + 1, (To,0 10,0)
+n;(I1011,00+7;(I2,012,0)+n;(T0,0010,0,0) +n;I1,0011,0,0)
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+17;I1,1,01 L, L,0)+1;(I20012,0,0) +15;(I2,1,012,1,0)
+1;(I22012,2,0)+1;(I1,00011,0,0,0) +n;(I1,1,1,011,1,1,0)
+17;I21,0012,1,0,00+n;U22,1,012,2,1,0),

where
N G2 A3 A A ~ H2
] aj, ay  3J;Bj, 3E; _15Bj
2AN  4A2N2  6A3N3  4A2N  4A2N  16A3N
45&j1 le 3ajl Ejl
16A4N2  2A3N2°
Foo— i Chidi | 3ChiBh | @i +ap)Fpjy | 3@ +28,)Chii Bjy
' 4A2N? 4A2N? 8A3N?2 4A3N3
o= Sk | 4nCin 45CipB,  @.Cin  3C;,E,
T 2AN  242N2 16A4N2 2A3N3 2A3N2
Do= 3Cj2j1 sz Fjljz + szjl + Cjzjl sz &fZ(FjljZ + szjl) 3&jojzj1 sz
' 4A2N 2AN 2AN 2A2N?
e _ Ci1jiCisjo (2&1'2 + ‘A’js)cjsjl Cisj
0,0,0 = = = )
16A3N3 16A4N4
I _ (szh + Fj3jz)cjljz 3Cj1j3 Cj3j2 Bj3 3Cj3j2Cj1j2 Bj3
1,0,0 = = = ~
4A3N3 4A4N3 8A4N3
I _ Cj1j3 Cj2j3 &js Cj1j3 Cjzjs
1,1,0 = = =
4A2N2 2A3N3
I _ (&jz + &h)chjz Cisi CisjiCisjo
2,00 = = A
4A3N3 4A2N?
I _ 3Cj2j3 Cjsji Bjs (Fjijs + Fj3ji)Cjs
2,1,0 = = + =
2A3N? 2A2N2
oo — CisinCisin | 53Cisi Cisio
2,20 = = =
4AN 4A2N?
I _ Ci1jsCisjpCisjs CisisCisjnCiijn
1,0,0,0 = < = )
16A4N4 8A4 N4
I _ Ci1jsCirjsCija
LILIL0= —
6A3N3
r _ CJzJ4 CJ411 CJ413 Cj4j1 Cj4j3 Cjzj3
2,1,0,0 = =
4A3N3 4A3N3
r _ CiiuCiuji Ciuja
22,10 = —"——F———".
4A2N?

Note that Fj(z) is independent of z;

f(2) =exp(F1(z) +48(2)),

for i < j. The key properties of F;(z) for z € U, are
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N-L/2+8
/ exp(Fj(z))dz; = /A”N (Firi@+O0(N174) (< N). (66)
_N-1/2+8

Equation (65) is easily seen after applying (60) to eliminate most of the terms. Proof of (66)
requires a tedious calculation which we now outline.

First, apply (62) to make explicit the dependence of F;(z) on z; (a polynomial of degree 4).
Then expand

exp(F;(2)) = exp(Ro(z)) exp(—ANZ5) (1 + R (2)z + Ra(2)5 + -+ O(N™'72)),
(67)

where each R;(z) is independent of z; and contains defective moments only. As seen by ap-
plying (59), only a finite number of terms are required to achieve the requested error term. The
factor exp( ANZ2 ) comes from the first term n; (— AN | 2) of Fj(z). Products of moments that
occur need to be rewrltten as sums using (64). Next, integrate (67) over z; using

N2+

AN (2k)! 7 s
[ e e 2 ot

_N-1/2+8

for fixed k > 0, for some ¢ > 0. Here we have used the assumptions that A= (N _8/) and
&' < &’ < 2&. The result of the integration has the form

T 4
- R 1+ S = ~
/AN (Ro(@)) (1 + 5(2)) ‘/AN

Since S(z) = o(1) (in fact S(z) = O(N~1/2HkE"+8) for some k), we can expand the logarithm
using (59) again to limit the expansion to finitely many terms. Finally, apply (63) to rewrite the
defective moments in terms of ordmary generahzed moments. The result is the right side of (66).

If all the coefficients a aj, B], Cjk, E], F]k, JJ were real, we could apply (65) and (66) imme-
diately to find that

b g
dz=| =
fro=(z,
Uy

noting that Fy1(z) is independent of z.
When the coefficients are complex, we must take more care. Equation (65) only allows us to
write

(Ro(z) +log(1 + 5(z))).

N/2
) exp(Fyn+1+ O(8(N) + N™4)), (68)

/ f)dz= / exp(F1(z))dz + O(8(N)) / lexp(Fi1(z2))|dz. (69)

Uy Un Un

Let F]f"(z) be the same as F;(z) except that the coefficients &j, éj, C'jk, Ej, ﬁjk, jj are all
replaced by their real parts. Clearly

lexp(F1(2))| = exp(F; (2)),

and so, as in (68),
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N/2
/|exp(F1(z))|dz= 0(1)(5}\/) exp(F41)- (70)

From (66) we have for 1 < j < N that

>_1/2(1 . O(N_l_A))Vexp(Fj(z))de

T
AN

< ( L )1/2(1 + O(N’l’A))/!exp(Fj(z))|de,

AN
so we have by induction starting with (70) that

lexp(Fj+1(2)| =

(N=))/2
/|€XP(Fj+l(Z))|de+l ~-dzy < 0(1)(AN> exp(Fy11)-

Returning to (66), we find that, for 1 < j < N,

fexp(F (2))dzj---dzy = / /exp (Fjs1(2) + O(N"'"4))dzjq1---dzy
=,/ﬁ/eXP(Fj+1(Z))de+1 -dzy
+ O(N_I_A),/ ;—N/‘CXP(FHI(Z))WZJ'H coedzy
=,/AJTN/exp(Fjﬂ(z))dz,'Hmdz

p )(N—j+1)/2

+ov (4

AN

exp(Fii. ).

By induction on j, this gives

T
Fi))dz = (2
/eXp( 1) dz <AN

Un

which, together with (69) and (70) gives

T
d =
/f(z) ¢ (AN
Un

N/2 R
= (A”N> exp(Fn+1+ O(N™24 +8(N))Z), (71)

where Z = exp(F5 ~n+1 — Re(Fy+1)) and the last line is valid if (N~2 4+ 8(N))2 =o(1).
Applying (61) to the definition of F;(z), we find that

N/2
) (exp(Fys1) + O(N2)exp(F 1),

N/2
) (exp(Fn+1) + O(N™4 +8(N)) exp(Fy 1))

Fyi1=01+6,+0(N?),

from which it follows that Z has the value in the theorem statement to within a multiplied con-
stant. Also note that Z > 1, which is easiest to see by noting that the argument of the exponential
is a non-negative quadratic form for each j. The theorem now follows from (71). O
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