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Abstract

Let s = (s1, s2, . . . , sm) and t = (t1, t2, . . . , tn) be vectors of non-negative integers with
∑m

i=1 si =∑n
j=1 tj . Let B(s, t) be the number of m × n matrices over {0,1} with j th row sum equal to sj for

1 � j � m and kth column sum equal to tk for 1 � k � n. Equivalently, B(s, t) is the number of bipar-
tite graphs with m vertices in one part with degrees given by s, and n vertices in the other part with degrees
given by t . Most research on the asymptotics of B(s, t) has focused on the sparse case, where the best
result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result
is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends
the analytic methods used by the latter paper to the case where the row and column sums can vary within
certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case.
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1. Introduction

Let s = (s1, s2, . . . , sm) and t = (t1, t2, . . . , tn) be vectors of positive integers with
∑m

i=1 si =∑n
j=1 tj . Let B(s, t) be the number of m × n matrices over {0,1} with j th row sum equal to

sj for 1 � j � m and kth column sum equal to tk for 1 � k � n. Equivalently, B(s, t) is the
number of labeled bipartite graphs with m vertices in one part of the bipartition with degrees
given by s, and n vertices in the other part of the bipartition with degrees given by t . Let s be the
average value of s1, s2, . . . , sm and let t be the average value of t1, t2, . . . , tn. Define the density
λ = s/n = t/m, which is the fraction of entries in the matrix which equal 1.

The asymptotic value of B(s, t) has been much studied, especially since the celebrated Gale–
Ryser Theorem [10] that characterizes (s, t) such that B(s, t) > 0. Various authors have con-
sidered the semiregular case, where sj = s for 1 � j � m and tk = t for 1 � k � n. Write
B(m, s;n, t) for B(s, t) in this case. For the sparse (low-λ) semiregular case, the best result
is by McKay and Wang [7] who gave an asymptotic expression for B(m, s;n, t) which holds
when st = o((mn)1/2). Canfield and McKay [1] used analytic methods to obtain an asymptotic
expression for B(m, s;n, t) in two ranges: in the first, the matrix is relatively square and the
density is not too close to 0 or 1, while in the second, the matrix is much wider than high (or
vice versa) but the density is arbitrary. For the sparse irregular case, the best result is that of
Greenhill, McKay and Wang [2], who gave an asymptotic expression for B(s, t) which holds
when max{sj }max{tk} = o((λmn)2/3).

See [1,2] and [7] for a more extensive historical survey.
The contribution of this paper is to adapt the approach of [1] to the dense irregular case

when the matrix is relatively square and the density is not too close to 0 or 1. See McKay and
Wormald [8] for the corresponding calculation for symmetric matrices.

In keeping with these earlier papers, the asymptotic value of B(s, t) can be expressed by a
very nice formula involving binomial coefficients. We now state our theorem.

Theorem 1. Let s = s(m,n) = (s1, s2, . . . , sm) and t = t(m,n) = (t1, t2, . . . , tn) be vectors
of positive integers such that

∑m
j=1 sj = ∑n

k=1 tk for all m,n. Define s = m−1∑m
j=1 sj , t =

n−1∑n
k=1 tk , λ = s/n = t/m and A = 1

2λ(1 − λ). For some ε > 0, suppose that |sj − s| =
O(n1/2+ε) uniformly for 1 � j � m, and |tk − t | = O(m1/2+ε) uniformly for 1 � k � n. Define
R = ∑m

j=1(sj − s)2 and C = ∑n
k=1(tk − t)2. Let a, b > 0 be constants such that a + b < 1

2 .

Suppose that m, n → ∞ with n = o(A2m1+ε), m = o(A2n1+ε) and

(1 − 2λ)2

8A

(
1 + 5m

6n
+ 5n

6m

)
� a logn.

Then, provided ε > 0 is small enough, we have

B(s, t) =
(

mn

λmn

)−1 m∏
j=1

(
n

sj

) n∏
k=1

(
m

tk

)

× exp

(
−1

2

(
1 − R

2Amn

)(
1 − C

2Amn

)
+ O

(
n−b

))
.

Proof. The proof of this theorem is the topic of the paper; here we will summarize the main
phases and draw their conclusions together. The basic idea is to identify B(s, t) as a coefficient in
a multivariable generating function and to extract that coefficient using the saddle-point method.
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In Section 2, Eq. (1), we write B(s, t) = P(s, t)I (s, t), where P(s, t) is a rational expression
and I (s, t) is an integral in m + n complex dimensions. Both depend on the location of the
saddle point, which is the solution of some non-linear equations. Those equations are solved
in Section 3, and this leads to the value of P(s, t) in (20). In Section 4, the integral I (s, t)

is estimated in a small region R′ defined in (33). The result is given by Theorem 2 together
with (24). Finally, in Section 5, it is shown that the integral I (s, t) restricted to the exterior of R′
is negligible. The present theorem thus follows from (1), (20), Theorems 2–3 and (24). �

Note that the error term in the above slightly improves the error term for the semiregular case
proved in [1].

Theorem 1 has an instructive interpretation. Write it as B(s, t) = NP1P2E, where

N =
(

mn

λmn

)
, P1 = N−1

m∏
j=1

(
n

sj

)
, P2 = N−1

n∏
k=1

(
m

tk

)
,

E = exp

(
−1

2

(
1 − R

2Amn

)(
1 − C

2Amn

)
+ O

(
n−b

))
.

Clearly, N is the number of m × n binary matrices with λmn ones. P1 is the probability that a
matrix randomly chosen from this class has row sums s, while P2 is the probability of the similar
event of having column sums t . If these two events were independent, we would have E = 1, so
E can be taken as a measure of their non-independence. For the case when s and t are vectors of
constants, that is, R = C = 0, Ordentlich and Roth [9] proved that E � 1.

It is proved in [2] that the same formula for B(s, t) modulo the error term also holds
in the sparse case. Specifically, it holds with a different vanishing error term whenever
max{sj }max{tk} = o((λmn)2/3), R + C = O((λmn)4/3) and RC = O((λmn)7/3). In [1], ev-
idence is presented that the formula is universal in the semiregular case (R = C = 0) and it is
tempting to conjecture that the same is true in the irregular case for a wide range of R,C values.

We will use a shorthand notation for summation over doubly subscripted variables. If xjk is a
variable for 1 � j � m and 1 � k � n, then

xj• =
n∑

k=1

xjk, x•k =
m∑

j=1

xjk, x•• =
m∑

j=1

n∑
k=1

xjk,

xj∗ =
n−1∑
k=1

xjk, x∗k =
m−1∑
j=1

xjk, x∗∗ =
m−1∑
j=1

n−1∑
k=1

xjk,

for 1 � j � m and 1 � k � n.
Throughout the paper, the asymptotic notation O(f (m,n)) refers to the passage of m and n

to ∞. We also use a modified notation Õ(f (m,n)), which is to be taken as a shorthand for
O(f (m,n)nO(1)ε). In this case it is important that the O(1) factor is uniform over ε provided
ε is small enough; for example we cannot write f (m,n)n(ε−1)ε as Õ(f (m,n)) even though
ε−1 = O(1) (ε being defined as a constant). Under the assumptions of Theorem 1, we have m =
Õ(n) and n = Õ(m). We also have that 8 � A−1 � O(logn), so A−1 = Õ(1). More generally,
Ac1mc2+c3εnc4+c5ε = Õ(nc2+c4) if c1, c2, c3, c4, c5 are constants.
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2. Expressing the desired quantity as an integral

In this section we express B(s, t) as a contour integral in (m+n)-dimensional complex space,
then begin to estimate its value using the saddle-point method.

Firstly, notice that B(s, t) is the coefficient of x
s1
1 · · ·xsm

m y
t1
1 · · ·ytn

n in the function

m∏
j=1

n∏
k=1

(1 + xjyk).

By Cauchy’s coefficient theorem this equals

B(s, t) = 1

(2πi)m+n

∮
· · ·
∮ ∏m

j=1
∏n

k=1(1 + xjyk)

x
s1+1
1 · · ·xsm+1

m y
t1+1
1 · · ·ytn+1

n

dx1 · · ·dxm dy1 · · ·dyn,

where each integral is along a simple closed contour enclosing the origin anticlockwise. It will
suffice to take each contour to be a circle; specifically, we will write

xj = qj e
iθj and yk = rke

iφk

for 1 � j � m and 1 � k � n. Also define

λjk = qj rk

1 + qj rk

for 1 � j � m and 1 � k � n. Then 1 + xjyk = (1 + qj rk)(1 + λjk(e
i(θj +φk) − 1)), so

B(s, t) =
∏m

j=1
∏n

k=1(1 + qj rk)

(2π)m+n
∏m

j=1 q
sj
j

∏n
k=1 r

tk
k

×
π∫

−π

· · ·
π∫

−π

∏m
j=1

∏n
k=1(1 + λjk(e

i(θj +φk) − 1))

exp(i
∑m

j=1 sj θj + i
∑n

k=1 tkφk)
dθ dφ, (1)

where θ = (θ1, . . . , θm) and φ = (φ1, . . . , φn). Write B(s, t) = P(s, t)I (s, t) where P(s, t) de-
notes the factor in front of the integral in (1) and I (s, t) denotes the integral. We will choose
the radii qj , rk so that there is no linear term in the logarithm of the integrand of I (s, t) when
expanded for small θ ,φ. This gives the equation

m∑
j=1

n∑
k=1

λjk(θj + φk) −
m∑

j=1

sj θj −
n∑

k=1

tkφk = 0.

For this to hold for all θ ,φ, we require

λj• = sj (1 � j � m),

λ•k = tk (1 � k � n). (2)

In Section 3 we show that (2) has a solution, and determine to sufficient accuracy the various
functions of the radii, such as P(s, t), that we require. In Section 4 we evaluate the integral
I (s, t) within a certain region R defined in (22). Section 5 contains the proof that the integral is
concentrated within the region R.
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3. Locating the saddle-point

In this section we solve (2) and derive some of the consequences of the solution. As with the
whole paper, we work under the assumptions of Theorem 1.

Change variables to {aj }mj=1, {bk}nk=1 as follows:

qj = r
1 + aj

1 − r2aj

, rk = r
1 + bk

1 − r2bk

, (3)

where

r =
√

λ

1 − λ
.

Equation (2) is slightly underdetermined, which we will exploit to impose an additional con-
dition. If {qj }, {rk} satisfy (2) and c > 0 is a constant, then {cqj }, {rk/c} also satisfy (2). From
this we can see that, if there is a solution to (2) at all, there is one for which

∑m
j=1 aj < 0 and∑n

k=1 bk > 0, and also a solution for which
∑m

j=1 aj > 0 and
∑n

k=1 bk < 0. It follows from the
Intermediate Value Theorem that there is a solution for which

n

m∑
j=1

aj = m

n∑
k=1

bk, (4)

so we will seek a common solution to (2) and (4).
From (3) we find that

λjk/λ = 1 + aj + bk + Zjk, (5)

where

Zjk = ajbk(1 − r2 − r2aj − r2bk)

1 + r2ajbk

, (6)

and that Eq. (2) can be rewritten as

aj = sj − s

λn
− 1

n

n∑
k=1

bk − Zj•
n

(1 � j � m),

bk = tk − t

λm
− 1

m

m∑
j=1

aj − Z•k
m

(1 � k � n). (7)

Summing (7) over j, k, we find in both cases that

n

m∑
j=1

aj + m

n∑
k=1

bk = −Z••. (8)

Equations (4) and (8) together imply that

n

m∑
j=1

aj = m

n∑
k=1

bk = −1

2
Z••.

Substituting back into (7), we obtain
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aj = Aj (a1, . . . , am, b1, . . . , bn),

bk = Bk(a1, . . . , am, b1, . . . , bn), (9)

for 1 � j � m, 1 � k � n, where

Aj (a1, . . . , am, b1, . . . , bn) = sj − s

λn
− Zj•

n
+ Z••

2mn
,

Bk(a1, . . . , am, b1, . . . , bn) = tk − t

λm
− Z•k

m
+ Z••

2mn
.

Equation (9) suggests an iteration. Start with a
(0)
j = b

(0)
k = 0 for all j, k, and, for each � � 0,

define

a
(�+1)
j = Aj

(
a

(�)
1 , . . . , a(�)

m , b
(�)
1 , . . . , b(�)

n

)
,

b
(�+1)
k = Bk

(
a

(�)
1 , . . . , a(�)

m , b
(�)
1 , . . . , b(�)

n

)
, (10)

where Zj• = Z
(�)
j• = Zj•(a(�)

1 , . . . , a
(�)
m , b

(�)
1 , . . . , b

(�)
n ) and similarly for Z•k = Z

(�)
•k and Z•• =

Z
(�)•• . We will show that this iteration converges to a solution of (9) using a standard contraction-

mapping argument. Recall that A−1 = O(logn) under the assumptions of Theorem 1 (which
we are adopting throughout). This implies that r2 = O(logn). Therefore, within the region A
defined by |aj |, |bk| � n−1/3 for all j, k, we have that

∂Zj,k

∂aj

= o
(
m−1/4) and

∂Zj,k

∂bk

= o
(
n−1/4),

which imply that, in the same region, we have

∂Aj

∂aj ′
=
{

o(m−1/4) (j ′ = j),

o(m−5/4) (j ′ �= j),

∂Aj

∂bk

= o
(
n−5/4),

∂Bk

∂aj

= o
(
m−5/4), ∂Bk

∂bk′
=
{

o(n−1/4) (k′ = k),

o(n−5/4) (k′ �= k).

Therefore, by the mean value theorem, we have for � � 1 that

max
j

∣∣a(�+1)
j − a

(�)
j

∣∣+ max
k

∣∣b(�+1)
k − b

(�)
k

∣∣= o
(
m−1/4)max

j

∣∣a(�)
j − a

(�−1)
j

∣∣
+ o

(
n−1/4)max

k

∣∣b(�)
k − b

(�−1)
k

∣∣,
provided {a(�−1)

j } ∪ {b(�−1)
k } ∪ {a(�)

j } ∪ {b(�)
k } ⊆ A.

Applying the iteration once, we have

a
(1)
j = (sj − s)/(λn) and b

(1)
k = (tk − t)/(λm).

Since {a(0)
j }, {b(0)

k } and {a(1)
j }, {b(1)

k } lie inside 1
2A, we find by induction that {a(�)

j }, {b(�)
k } lie

in �
�+1A for all �. Moreover, the iteration is Cauchy-convergent in the maximum norm, and the

error in stopping at {a(�)
j }, {b(�)

k } is at most maxj |a(�)
j − a

(�−1)
j | + maxk|b(�)

k − b
(�−1)
k |.

When we carry out this iteration, we find that all the encountered a
(l)
j and b

(l)
k values

are Õ(n−1/2). It helps to know that the following approximation holds in that case:
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Zjk = (
1 − r2)ajbk − r2ajb

2
k − r2a2

j bk − r2(1 − r2)a2
j b

2
k + Õ

(
n−5/2).

Using the fact that
∑m

j=1 a
(1)
j = 0 and

∑n
k=1 b

(1)
k = 0, we find that

Z
(1)
j• = −r2a

(1)
j

n∑
k=1

(
b

(1)
k

)2 + Õ
(
n−1),

Z
(1)
•k = −r2b

(1)
k

m∑
j=1

(
a

(1)
j

)2 + Õ
(
n−1),

Z(1)•• = Õ(1).

Therefore,

a
(2)
j = sj − s

λn
+ (sj − s)C

λ2(1 − λ)m2n2
+ Õ

(
n−2) (1 � j � m),

b
(2)
k = tk − t

λm
+ (tk − t)R

λ2(1 − λ)m2n2
+ Õ

(
n−2) (1 � k � n).

Similarly,

Z
(2)
j• = −r2a

(2)
j

n∑
k=1

(
b

(2)
k

)2 − r2(1 − r2)(a(2)
j

)2 n∑
k=1

(
b

(2)
k

)2 + Õ
(
n−3/2),

Z
(2)
•k = −r2b

(2)
k

m∑
j=1

(
a

(2)
j

)2 − r2(1 − r2)(b(2)
k

)2 m∑
j=1

(
a

(2)
j

)2 + Õ
(
n−3/2),

Z(2)•• = −r2(1 − r2) m∑
j=1

(
a

(2)
j

)2 n∑
k=1

(
b

(2)
k

)2 + Õ
(
n−1/2),

which gives

a
(3)
j = sj − s

λn
+ (sj − s)C

λ2(1 − λ)m2n2
+ (1 − 2λ)(sj − s)2C

λ3(1 − λ)2m2n3

− (1 − 2λ)RC

2λ3(1 − λ)2m3n3
+ Õ

(
n−5/2) (1 � j � m),

b
(3)
k = tk − t

λm
+ (tk − t)R

λ2(1 − λ)m2n2
+ (1 − 2λ)(tk − t)2R

λ3(1 − λ)2m3n2

− (1 − 2λ)RC

2λ3(1 − λ)2m3n3
+ Õ

(
n−5/2) (1 � k � n). (11)

Further iterations make no change to this accuracy, so we have that aj = a
(3)
j + Õ(n−5/2) and

bk = b
(3)
k + Õ(n−5/2). We also have that

Zjk = (1 − 2λ)(sj − s)(tk − t)

λ2(1 − λ)mn
− (sj − s)(tk − t)2

λ2(1 − λ)m2n
− (sj − s)2(tk − t)

λ2(1 − λ)mn2

− (1 − 2λ)(sj − s)2(tk − t)2

λ3(1 − λ)2m2n2
+ (1 − 2λ)(sj − s)(tk − t)R

λ3(1 − λ)2m2n3

+ (1 − 2λ)(sj − s)(tk − t)C

3 2 3 2
+ Õ

(
n−5/2). (12)
λ (1 − λ) m n
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A sufficient approximation of λjk is given by substituting (11) and (12) into (5). In evaluating
the integral I (s, t), the following approximations will be required:

λjk(1 − λjk) = λ(1 − λ) + (1 − 2λ)(sj − s)

n
+ (1 − 2λ)(tk − t)

m
− (sj − s)2

n2

− (tk − t)2

m2
+ (1 − 6λ + 6λ2)(sj − s)(tk − t)

λ(1 − λ)mn
+ Õ

(
n−3/2), (13)

λjk(1 − λjk)(1 − 2λjk) = λ(1 − λ)(1 − 2λ) + (1 − 6λ + 6λ2)(sj − s)

n

+ (1 − 6λ + 6λ2)(tk − t)

m
+ Õ

(
n−1), (14)

λjk(1 − λjk)
(
1 − 6λjk + 6λ2

jk

)= λ(1 − λ)
(
1 − 6λ + 6λ2)+ Õ

(
n−1/2). (15)

3.1. Estimating the factor P(s, t)

Let

Λ =
m∏

j=1

n∏
k=1

λ
λjk

jk (1 − λjk)
1−λjk .

Then

Λ−1 =
m∏

j=1

n∏
k=1

(
1 + qj rk

qj rk

)λjk

(1 + qj rk)
1−λjk

=
m∏

j=1

n∏
k=1

(1 + qj rk)

(
m∏

j=1

q
λj•
j

n∏
k=1

r
λ•k

k

)−1

=
m∏

j=1

n∏
k=1

(1 + qj rk)

m∏
j=1

q
−sj
j

n∏
k=1

r
−tk
k

using (2). Therefore the factor P(s, t) in front of the integral in (1) is given by

P(s, t) = (2π)−(m+n)Λ−1.

We proceed to estimate Λ. Writing λjk = λ(1 + xjk), we have

log

(
λ

λjk

jk (1 − λjk)
1−λjk

λλ(1 − λ)1−λ

)
= λxjk log

(
λ

1 − λ

)
+ λ

2(1 − λ)
x2
jk − λ(1 − 2λ)

6(1 − λ)2
x3
jk

+ λ(1 − 3λ + 3λ2)

12(1 − λ)3
x4
jk + O

(
x5
jk

(1 − λ)4

)
. (16)

We know from (2) that λ•• = mnλ, which implies that x•• = 0, hence the first term on the right
side of (16) does not contribute to Λ. Now using (5) we can write xjk = aj + bk +Zjk and apply
the estimates in (11) and (12) to obtain
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Λ = (
λλ(1 − λ)1−λ

)mn exp

(
R

4An
+ C

4Am
+ RC

8A2m2n2
− (1 − 2λ)R3

24A2n2
− (1 − 2λ)C3

24A2m2

+ (1 − 3λ + 3λ2)R4

96A3n3
+ (1 − 3λ + 3λ2)C4

96A3m3
+ Õ

(
n−1/2)), (17)

where R� =∑m
j=1(sj − s)� and C� =∑n

k=1(t − tk)
� for any �. Note that R2 = R and C2 = C.

To match the formula from the sparse case solved in [2], we will write (17) in terms of bino-
mial coefficients. First, by Stirling’s expansion of the logarithm of the gamma function, we have
that (

N

(x + d)N

)
= (xx+d(1 − x)1−x−d)−N

2
√

πXN

× exp

(
−1 − 2X

24XN
− d2N

4X
− (1 − 2x)d

4X
+ (1 − 4X)d2

16X2

+ (1 − 2x)d3N

24X2
− (1 − 6X)d4N

96X3
+ O

(
d5N

X4
+ d

X2N
+ 1

X3N3

))
(18)

as N → ∞, provided x = x(N), X = X(N) = 1
2x(1 − x) and d = d(N) are such that 0 < x < 1,

0 < x + d < 1 and provided that the error term in the above is o(1). From this we infer that(
mn

λmn

)−1 m∏
j=1

(
n

sj

) n∏
k=1

(
m

tk

)
= (λλ(1 − λ)1−λ)−mn

(4πA)(m+n−1)/2m(n−1)/2n(m−1)/2

× exp

(
− R

4An
− C

4Am
− 1 − 2A

24A

(
m

n
+ n

m

)
+ 1 − 4A

16A2

(
R

n2
+ C

m2

)
+ 1 − 2λ

24A2

(
R3

n2
+ C3

m2

)
− 1 − 6A

96A3

(
R4

n3
+ C4

m3

)
+ Õ

(
n−1/2)). (19)

Putting (17) and (19) together, we find that

P(s, t) = Λ−1(2π)−(m+n)

= A(m+n−1)/2m(n−1)/2n(m−1)/2

2π(m+n+1)/2

(
mn

λmn

)−1 m∏
j=1

(
n

sj

) n∏
k=1

(
m

tk

)

× exp

(
1 − 2A

24A

(
m

n
+ n

m

)
− RC

8A2m2n2
− 1 − 4A

16A2

(
R

n2
+ C

m2

)
+ Õ

(
n−1/2)).

(20)

4. Evaluating the integral

Our next task is to evaluate the integral I (s, t) given by

I (s, t) =
π∫

· · ·
π∫ ∏m

j=1
∏n

k=1(1 + λj,k(e
i(θj +φk) − 1))

exp(i
∑m

j=1 sj θj + i
∑n

k=1 tkφk)
dθ dφ. (21)
−π −π
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It is convenient to think of θj , φk as points on the unit circle. We wish to define “averages”
of the angles θj , φk . To do this cleanly we make the following definitions, as in [1]. Let C be
the ring of real numbers modulo 2π , which we can interpret as points on a circle in the usual
way. Let z be the canonical mapping from C to the real interval (−π,π]. An open half-circle is
Ct = (t − π/2, t + π/2) ⊆ C for some t . Now define

ĈN =
⋃
t

ĈN
t = {

x = (x1, . . . , xN) ∈ CN
∣∣ x1, . . . , xN ∈ Ct for some t ∈ R

}
.

If x = (x1, . . . , xN) ∈ CN
0 then define

x̄ = z−1

(
1

N

N∑
j=1

z(xj )

)
.

More generally, if x ∈ CN
t then define x̄ = t + (x1 − t, . . . , xN − t). The function x → x̄ is well

defined and continuous for x ∈ ĈN .
Let R denote the set of vector pairs (θ ,φ) ∈ Ĉm × Ĉn such that

|θ̄ + φ̄| � (mn)−1/2+2ε,

|θ̂j | � n−1/2+ε (1 � j � m),

|φ̂k| � m−1/2+ε (1 � k � n), (22)

where θ̂j = θj − θ̄ and φ̂k = φk − φ̄. In this definition, values are considered in C. The constant
ε is the sufficiently-small value required by Theorem 1.

Let IR′′(s, t) denote the integral I (s, t) restricted to any region R′′. In this section, we esti-
mate IR′(s, t) in a certain region R′ ⊇ R. In Section 5 we will show that the remaining parts
of I (s, t) are negligible. We begin by analyzing the integrand in R, but for future use when we
expand the region to R′ (to be defined in (33)), note that all the approximations we establish for
the integrand in R also hold in the superset of R′ defined by

|θ̄ + φ̄| � 3(mn)−1/2+2ε,

|θ̂j | � 3n−1/2+ε (1 � j � m − 1),

|θ̂m| � 2n−1/2+3ε,

|φ̂k| � 3m−1/2+ε (1 � k � n − 1),

|φ̂n| � 2m−1/2+3ε. (23)

Define θ̂ = (θ̂1, . . . , θ̂m−1) and φ̂ = (φ̂1, . . . , φ̂n−1). Let T1 be the transformation
T1(θ̂ , φ̂, ν, δ) = (θ ,φ) defined by

ν = θ̄ + φ̄, δ = θ̄ − φ̄,

together with θ̂j = θj − θ̄ (1 � j � m − 1) and φ̂k = φk − φ̄ (1 � k � n − 1). We also define the
1-many transformation T ∗

1 by

T ∗
1 (θ̂ , φ̂, ν) =

⋃
δ

T1(θ̂ , φ̂, ν, δ).

After applying the transformation T1 to IR(s, t), the new integrand is easily seen to be
independent of δ, so we can multiply by the range of δ and remove it as an independent vari-
able. Therefore, we can continue with an (m + n − 1)-dimensional integral over S such that
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R = T ∗
1 (S). More generally, if S ′′ ⊆ (− 1

2π, 1
2π)m+n−2 × (−2π,2π] and R′′ = T ∗

1 (S ′′), we
have

IR′′(s, t) = 2πmn

∫
S ′′

G(θ̂ , φ̂, ν) d θ̂ dφ̂ dν, (24)

where G(θ̂ , φ̂, ν) = F(T1(θ̂ , φ̂, ν,0)) with F(θ ,φ) being the integrand of (21). The factor 2πmn

combines the range of δ, which is 4π , and the Jacobian of T1, which is mn/2.
Note that S is defined by the same inequalities (22) as define R. The first inequality is now

|ν| � (mn)−1/2+2ε and the bounds on

θ̂m = −
m−1∑
j=1

θ̂j and φ̂m = −
n−1∑
k=1

φ̂k

still apply even though these are no longer variables of integration.
Our main result in this section is the following.

Theorem 2. Under the conditions of Theorem 1, there is a region S ′ ⊇ S such that∫
S ′

G(θ̂ , φ̂, ν) d θ̂ dφ̂ dν = (mn)−1/2
(

π

Amn

)1/2(
π

An

)(m−1)/2(
π

Am

)(n−1)/2

× exp

(
−1

2
− 1 − 2A

24A

(
m

n
+ n

m

)
+ 1

4A

(
1

m
+ 1

n

)(
R

n
+ C

m

)
+ 1 − 8A

16A2

(
R

n2
+ C

m2

)
+ O

(
n−b

))
.

In the region S , the integrand of (24) can be expanded as

G(θ̂ , φ̂, ν) = exp

(
−

m∑
j=1

n∑
k=1

(A + αjk)(ν + θ̂j + φ̂k)
2

− i

m∑
j=1

n∑
k=1

(A3 + βjk)(ν + θ̂j + φ̂k)
3

+
m∑

j=1

n∑
k=1

(A4 + γjk)(ν + θ̂j + φ̂k)
4 + O

(
A

m∑
j=1

n∑
k=1

|ν + θ̂j + φ̂k|5
))

.

Here αjk , βjk , and γjk are defined by

1

2
λjk(1 − λjk) = A + αjk,

1

6
λjk(1 − λjk)(1 − 2λjk) = A3 + βjk,

1

24
λjk(1 − λjk)

(
1 − 6λjk + 6λ2

jk

)= A4 + γjk, (25)

where
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A = 1

2
λ(1 − λ), A3 = 1

6
λ(1 − λ)(1 − 2λ), and A4 = 1

24
λ(1 − λ)

(
1 − 6λ + 6λ2).

Approximations for αjk , βjk , γjk were given in (13)–(15).

4.1. Another change of variables

We now make a second change of variables (θ̂ , φ̂, ν) = T2(ζ , ξ , ν), where ζ = (ζ1, . . . , ζm−1)

and ξ = (ξ1, . . . , ξn−1), whose purpose is to almost diagonalize the quadratic part of G. The
diagonalization will be completed in the next subsection. The transformation T2 is defined as
follows. For 1 � j � m − 1 and 1 � k � n − 1 let

θ̂j = ζj + cπ1, φ̂k = ξk + dρ1,

where

c = − 1

m + m1/2
and d = − 1

n + n1/2

and, for 1 � h � 4,

πh =
m−1∑
j=1

ζ h
j , ρh =

n−1∑
k=1

ξh
k .

The Jacobian of the transformation is (mn)−1/2. In [1], this transformation was seen to exactly
diagonalize the quadratic part of the integrand in the semiregular case. In the present irregular
case, the diagonalization is no longer exact but still provides useful progress.

By summing the equations θ̂j = ζj + cπ1 and φ̂k = ξk + dρ1, we find that

π1 = m1/2
m−1∑
j=1

θ̂j , |π1| � m1/2n−1/2+ε,

ρ1 = n1/2
n−1∑
k=1

φ̂k, |ρ1| � n1/2m−1/2+ε, (26)

where the right sides come from the bounds on θ̂m and φ̂n. This implies that

ζj = θ̂j + Õ
(
n−1) (1 � j � m − 1),

ξk = φ̂k + Õ(n−1) (1 � k � n − 1). (27)

The transformed region of integration is T −1
2 (S), but for convenience we will expand it a little

to be the region defined by the inequalities

|ζj | � 3
2n−1/2+ε (1 � j � m − 1),

|ξk| � 3
2m−1/2+ε (1 � k � n − 1),

|π1| � m1/2n−1/2+ε,

|ρ1| � n1/2m−1/2+ε,

|ν| � (mn)−1/2+2ε. (28)
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We now consider the new integrand E1 = exp(L1) = G ◦ T2. As in [1], the semiregular parts
of the integrand (those not involving αjk , βjk or γjk) transform to

−Amnν2 − Anπ2 − Amρ2 − 3iA3nνπ2 − 3iA3mνρ2 + 6A4π2ρ2

− iA3nπ3 − iA3nρ3 − 3iA3cnπ1π2 − 3iA3dmρ1ρ2 + A4nπ4 + A4mρ4 + Õ
(
n−1/2).

(29)

To see the effect of the transformation on the irregular parts of the integrand, write ζm = θ̂m −cπ1
and ξn = θ̂n −dρ1. From (26) we can see that ζm = Õ(n−1/2) and ξn = Õ(n−1/2). Thus we have,
for all 1 � j � m and 1 � k � n, ζj + ξk = Õ(n−1/2) and cπ1 + dρ1 + ν = Õ(n−1). Recalling
also that αjk,βjk, γjk = Õ(n−1/2), we have

m∑
j=1

n∑
k=1

αjk(ν + θ̂j + φ̂k)
2

=
m∑

j=1

n∑
k=1

αjk

(
(ζj + ξk)

2 + 2(ζj + ξk)(ν + cπ1 + dρ1)
)+ Õ

(
n−1/2),

m∑
j=1

n∑
k=1

βjk(ν + θ̂j + φ̂k)
3 =

m∑
j=1

n∑
k=1

βjk(ζj + ξk)
3 + Õ

(
n−1/2),

m∑
j=1

n∑
k=1

γjk(ν + θ̂j + φ̂k)
4 = Õ

(
n−1/2).

Moreover, the terms on the right sides of the above that involve ζm or ξn contribute only Õ
(
n−1/2

)
in total, so we can drop them. Combining this with (29), we have

L1 = −Amnν2 − Anπ2 − Amρ2 − 3iA3nνπ2 − 3iA3mνρ2 + 6A4π2ρ2

− iA3nπ3 − iA3nρ3 − 3iA3cnπ1π2 − 3iA3dmρ1ρ2 + A4nπ4 + A4mρ4

−
m−1∑
j=1

n−1∑
k=1

αjk

(
(ζj + ξk)

2 + 2(ζj + ξk)(ν + cπ1 + dρ1)
)

− i

m−1∑
j=1

n−1∑
k=1

βjk(ζj + ξk)
3 + Õ

(
n−1/2). (30)

4.2. Completing the diagonalization

The quadratic form in E1 is the following function of the m + n − 1 variables ζ , ξ , ν:

Q = −Amnν2 − Anπ2 − Amρ2

−
m−1∑
j=1

n−1∑
k=1

αjk

(
(ζj + ξk)

2 + 2(ζj + ξk)(ν + cπ1 + dρ1)
)
. (31)

We will make a third change of variables, (ζ , ξ , ν) = T3(σ ,τ ,μ), that diagonalizes this quadratic
form, where σ = (σ1, . . . , σm−1) and τ = (τ1, . . . , τn−1). This is achieved using a slight exten-
sion of [6, Lemma 3.2].
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Lemma 1. Let X and Y be square matrices of the same order, such that X−1 exists and all the
eigenvalues of X−1Y are less than 1 in absolute value. Then(

I + YX−1)−1/2
(X + Y)

(
I + X−1Y

)−1/2 = X,

where the fractional powers are defined by the binomial expansion.

Note that X−1Y and YX−1 have the same eigenvalues, so the eigenvalue condition on X−1Y

applies equally to YX−1. If we also have that both X and Y are symmetric, then∑
r�0

(− 1
2

r

)(
YX−1)T =

∑
r�0

(− 1
2

r

)(
X−1)T Y T =

∑
r�0

(− 1
2

r

)
X−1Y

so (I + YX−1)−1/2 is the transpose of (I + X−1Y)−1/2. Let V be the symmetric matrix asso-
ciated with the quadratic form Q. Write V = Vd + Vnd where Vd has all off-diagonal entries
equal to zero and matches V on the diagonal entries, and Vnd has all diagonal entries zero and
matches V on the off-diagonal entries. We will apply Lemma 1 with X = Vd and Y = Vnd.
Note that Vd is invertible and that both Vd and Vnd are symmetric. Let T3 be the transformation
given by T3(σ ,τ ,μ)T = (ζ , ξ , ν)T = (I + V −1

d Vnd)
−1/2(σ ,τ ,μ)T . If the eigenvalue condition

of Lemma 1 is satisfied then this transformation diagonalizes the quadratic form Q, keeping the
diagonal entries unchanged.

From the formula for Q we extract the following coefficients, which tell us the diagonal and
off-diagonal entries of V :[

ζ 2
j

]
Q = −An − (1 + 2c)αj∗,[

ξ2
k

]
Q = −Am − (1 + 2d)α∗k,[

ν2]Q = −Amn,

[ζj1ζj2]Q = −2c(αj1∗ + αj2∗) (j1 �= j2),

[ζj ξk]Q = −2αjk − 2dαj∗ − 2cα∗k,

[ξk1ξk2]Q = −2d(α∗k1 + α∗k2) (k1 �= k2),

[ζj ν]Q = −2αj∗,
[ξkν]Q = −2α∗k.

Using these equations we find that all off-diagonal entries of V −1
d Vnd are Õ(n−3/2), except for

the column corresponding to ν which has off-diagonal entries of size Õ(n−1/2). Similarly, the
off-diagonal entries of VndV

−1
d are all Õ(n−3/2), except for the row corresponding to ν, which

has off-diagonal entries of size Õ(n−1/2). To see that these conditions imply that the eigenvalues
of V −1

d Vnd are less than one, recall that the value of any matrix norm is greater than or equal
to the greatest absolute value of an eigenvalue. The ∞-norm (maximum row sum of absolute
values) of V −1

d Vnd is Õ(n−1/2), so the eigenvalues are all Õ(n−1/2).
We also need to know the Jacobian of the transformation T3.

Lemma 2. Let M be a matrix of order O(m+n) with all eigenvalues uniformly Õ(n−1/2). Then

det(I + M) = exp

(
trM − 1

2
trM2 + Õ

(
n−1/2)).
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Proof. The eigenvalue condition ensures that the Taylor series for log(I + M) converges and
that

det(I + M) = exp
(
tr log(I + M)

)
.

Expanding the logarithm and noting that |trMr | = Õ(n−(r−2)/2) for r � 3 gives the result. �
Let M = V −1

d Vnd. As noted before, the eigenvalues of M are all Õ(n−1/2) so Lemma 2
applies. Noting that tr(M) = 0 and calculating that tr(M2) = Õ(n−1), we conclude that the
Jacobian of T3 is

det
(
(I + M)−1/2)= (

det(I + M)
)−1/2 = 1 + Õ

(
n−1/2).

To derive T3 explicitly, we can expand (I + V −1
d Vnd)

−1/2 while noting that αj∗ = O(n1/2+ε)

for all j , α∗k = O(m1/2+ε) for all k, α∗∗ = O(mn2ε + nm2ε), R � mn1+2ε and C � nm1+2ε .
This gives

σj = ζj +
m−1∑
j ′=1

(
c(αj∗ + αj ′∗)

2An
+ Õ

(
n−2))ζj ′ +

n−1∑
k=1

(
αjk + dαj∗ + cα∗k

2An
+ Õ

(
n−2))ξk

+
(

αj∗
2An

+ Õ
(
n−1))ν + Õ

(
n−2),

τk = ξk +
m−1∑
j=1

(
αjk + dαj∗ + cα∗k

2Am
+ Õ

(
n−2))ζj +

n−1∑
k′=1

(
d(α∗k + α∗k′)

2Am
+ Õ

(
n−2))ξk′

+
(

α∗k

2Am
+ Õ

(
n−1))ν + Õ

(
n−2),

μ = ν +
m−1∑
j=1

(
αj∗

2Amn
+ Õ

(
n−2))ζj +

n−1∑
k=1

(
α∗k

2Amn
+ Õ

(
n−2))ξk + Õ

(
n−1)ν,

for 1 � j � m − 1, 1 � k � n − 1.
The transformation T −1

3 perturbs the region of integration in an irregular fashion that we must
bound. From the explicit form of T3 above, we have

σj = ζj +
m−1∑
j ′=1

Õ
(
n−3/2)ζj ′ +

n−1∑
k=1

Õ
(
n−3/2)ξk + Õ

(
n−1/2)ν + Õ

(
n−2)= ζj + Õ

(
n−1),

τk = ξk +
m−1∑
j=1

Õ
(
n−3/2)ζj +

n−1∑
k′=1

Õ
(
n−3/2)ξk′ + Õ

(
n−1/2)ν + Õ

(
n−2)= ξk + Õ

(
n−1)

for 1 � j � m − 1, 1 � k � n − 1, so σ ,τ are only slightly different from ζ , ξ .
For μ versus ν we have

μ = ν + O
(
n−1+2ε/A

)+ O
(
m−1+2ε/A

)= ν + o
(
(mn)−1/2+2ε

)
,

where the second step requires our assumptions m = o(A2n1+ε) and n = o(A2m1+ε). This shows
that the bound |ν| � (mn)−1/2+2ε is adequately covered by |μ| � 2(mn)−1/2+2ε .
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For 1 � h � 4, define

μh =
m−1∑
j=1

σj
h, νh =

n−1∑
k=1

τk
h.

From (28), we see that |π1| � m1/2n−1/2+ε and |ρ1| � m−1/2+εn1/2 are the remaining constraints
that define the region of integration. We next apply these constraints to bound μ1 and ν1. From
the explicit form of T3, we have

μ1 = π1 +
m−1∑
j=1

m−1∑
j ′=1

(
c(αj∗ + αj ′∗)

2An
+ Õ

(
n−2))ζj ′

+
m−1∑
j=1

n−1∑
k=1

(
αjk + dαj∗ + cα∗k

2An
+ Õ

(
n−2))ξk +

m−1∑
j=1

(
αj∗
2An

+ Õ
(
n−1))ν + Õ

(
n−1)

= π1 + cα∗∗
2An

m1/2n−1/2+ε + dα∗∗
2An

m−1/2+εn1/2 + α∗∗
2An

ν

+ (
1 + c(m − 1)

) n−1∑
k=1

α∗k

2An
ξk + c(m − 1)

2An

m−1∑
j ′=1

αj ′∗ζj ′ + Õ
(
n−1/2)

= π1 + c(m − 1)

2An

m−1∑
j ′=1

αj ′∗ζj ′ + Õ
(
n−1/2)

= π1 + O
(
A−1mn−1+2ε

)
= π1 + o

(
m1/2n−1/2+5ε/2). (32)

To derive the above we have used 1+c(m−1) = m1/2 and the bounds we have established on the
various variables. For the last step, we need the assumption m = o(A2n1+ε), which implies that
A−1mn−1+2ε = o(m1/2n−1/2+5ε/2). Since our region of integration has |π1| � m1/2n−1/2+ε , we
see that this implies the bound |μ1| � m1/2n−1/2+3ε . By a parallel argument, we have

ν1 = ρ1 + o
(
m−1/2+5ε/2n1/2),

which implies |ν1| � n1/2m−1/2+3ε . Putting together all the bounds we have derived, we see that

T −1
3

(
T −1

2 (S)
)⊆ Q∩M,

where

Q= {|σj | � 2n−1/2+ε, j = 1, . . . ,m − 1
}∩ {|τk| � 2m−1/2+ε, k = 1, . . . , n − 1

}
∩ {|μ| � 2(mn)−1/2+2ε

}
,

M = {|μ1| � m1/2n−1/2+3ε
}∩ {|ν1| � n1/2m−1/2+3ε

}
.

Now define

S ′ = T2
(
T3(Q∩M)

)
,

R′ = T ∗
1 (S ′). (33)
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We have proved that S ′ ⊇ S , so it is valid to take S ′ to be the region required by Theorem 2.
Also notice that R′ is contained in the region defined by the inequalities (23). As we forecast at
that time, our estimates of the integrand have been valid inside this expanded region. It remains
to apply the transformation T −1

3 to the integrand (30) so that we have it in terms of (σ ,τ ,μ).
The explicit form of T −1

3 is similar to the explicit form for T3, namely:

ζj = σj −
m−1∑
j ′=1

(
c(αj∗ + αj ′∗)

2An
+ Õ

(
n−2))σj ′ −

n−1∑
k=1

(
αjk + dαj∗ + cα∗k

2An
+ Õ

(
n−2))τk

−
(

αj∗
2An

+ Õ
(
n−1))μ + Õ

(
n−2),

ξk = τk −
m−1∑
j=1

(
αjk − dαj∗ + cα∗k

2Am
+ Õ

(
n−2))σj −

n−1∑
k′=1

(
d(α∗k + α∗k′)

2Am
+ Õ

(
n−2))τk′

−
(

α∗k

2Am
+ Õ

(
n−1))μ + Õ

(
n−2),

ν = μ −
m−1∑
j=1

(
αj∗

2Amn
+ Õ

(
n−2))σj −

n−1∑
k=1

(
α∗k

2Amn
+ Õ

(
n−2))τk + Õ

(
n−1)μ,

for 1 � j � m − 1, 1 � k � n − 1. In addition to the relationships between the old and new
variables that we proved before, we can note that π2 = μ2 + Õ(n−1/2), ρ2 = ν2 + Õ(n−1/2),
π3 = μ3 + Õ(n−1), ρ3 = ν3 + Õ(n−1), π4 = μ4 + Õ(n−3/2), and ρ4 = ν4 + Õ(n−3/2).

The quadratic part of L1, which we called Q in (31), loses its off-diagonal parts according to
our design of T3. Thus, what remains is

−Amnμ2 −
m−1∑
j=1

(
An + (1 + 2c)αj∗

)
σ 2

j −
n−1∑
k=1

(
Am + (1 + 2d)α∗k

)
τ 2
k

= −Amnμ2 − Anμ2 − Amν2 −
m−1∑
j=1

αj∗σ 2
j −

n−1∑
k=1

α∗kτ
2
k + Õ

(
n−1/2).

Next consider the cubic terms of L1. These are

−3iA3nνπ2 − 3iA3mνρ2 − iA3nπ3 − iA3nρ3

− 3iA3cnπ1π2 − 3iA3dnρ1ρ2 − i

m−1∑
j=1

n−1∑
k=1

βjk(ζj + ξk)
3.

We calculate the following in Q∩M:

−3iA3nνπ2 = −3iA3nμμ2 + 3iA3μ2

2Am

(
m−1∑

αj∗σj +
n−1∑

α∗kτk

)
+ Õ

(
n−1/2),
j=1 k=1
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−iA3nπ3 = −iA3nμ3 + 3iA3

2A

(
m−1∑

j,j ′=1

c(αj∗ + αj ′∗)σ 2
j σj ′

+
m−1∑
j=1

n−1∑
k=1

(αjk + dαj∗ + cα∗k)σ
2
j τk

)
+ Õ

(
n−1/2),

−3iA3cnπ1π2 = −3iA3cnμ1μ2 + 3iA3c
2mμ2

2A

m−1∑
j=1

αj∗σj + Õ
(
n−1/2), (34)

−i

m−1∑
j=1

n−1∑
k=1

βjk(ζj + ξk)
3 = −i

m−1∑
j=1

n−1∑
k=1

βjk(σj + τk)
3 + Õ

(
n−1/2), (35)

and the remaining cubic terms are each parallel to one of those. The proof of (34) is similar to
the proof of (32).

Finally we come to the quartic part of E1, which is

6A4π2ρ2 + A4nπ4 + A4mρ4 = 6A4μ2ν2 + A4nμ4 + A4mν4 + Õ
(
n−1/2).

In summary, the value of the integrand for (σ ,τ ,μ) ∈Q∩M is exp(L2 + Õ(n−1/2)), where

L2 = −Amnμ2 − Anμ2 − Amν2 −
m−1∑
j=1

αj∗σ 2
j −

n−1∑
k=1

α∗kτ
2
k + 6A4μ2ν2

+ A4nμ4 + A4mν4 − iA3nμ3 − iA3mν3 − 3iA3cnμ1μ2 − 3iA3dmν1ν2

− 3iA3nμμ2 − 3iA3mμν2 − i

m−1∑
j=1

βj∗σ 3
j − i

n−1∑
k=1

β∗kτ
3
k

+ i

m−1∑
j,j ′=1

gjj ′σjσ
2
j ′ + i

n−1∑
k,k′=1

hkk′τkτ
2
k′ + i

m−1∑
j=1

n−1∑
k=1

(
ujkσj τ

2
k + vjkσ

2
j τk

)
, (36)

with

gjj ′ = 3A3

2Am

((
1 + cm + c2m2)αj∗ + cmαj ′∗

)= O
(
n−1/2+ε

)
,

hkk′ = 3A3

2An

((
1 + dn + d2n2)α∗k + dnα∗k′

)= O
(
m−1/2+ε

)
,

ujk = 3A3

2An

(
nαjk + (1 + dn)αj∗ + cnα∗k

)− 3βjk = O
(
m−1/2+2ε + n−1/2+2ε

)
,

vjk = 3A3

2Am

(
mαjk + (1 + cm)α∗k + dmαj∗

)− 3βjk = O
(
m−1/2+2ε + n−1/2+2ε

)
.

Note that the O() estimates in the last four lines are uniform over j, j ′, k, k′.

4.3. Estimating the main part of the integral

Define E2 = exp(L2). We have shown that the value of the integrand in Q ∩ M is E1 =
E2(1 + Õ(n−1/2)). Denote the complement of the region M by Mc. We can approximate our
integral as follows:
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∫
Q∩M

E1 =
∫

Q∩M
E2 + Õ

(
n−1/2) ∫

Q∩M
|E2|

=
∫

Q∩M
E2 + Õ

(
n−1/2)∫

Q

|E2|

=
∫
Q

E2 + O(1)

∫
Q∩Mc

|E2| + Õ
(
n−1/2)∫

Q

|E2|. (37)

It suffices to estimate the value of each integral in (37).
We first compute the integral of E2 over Q. We proceed in three stages, starting with integra-

tion with respect to μ. For the latter, we can use the formula

(mn)−1/2+2ε∫
−(mn)−1/2+2ε

exp
(−Amnμ2 − iβμ

)
dμ =

(
π

Amn

)1/2

exp

(
− β2

4Amn
+ O

(
n−1)),

provided β = o(A(mn)1/2+2ε). In our case, β = 3A3(nμ2 + mν2), which is small enough be-
cause of the assumptions m = o(A2n1+ε) and n = o(A2m1+ε). Therefore, integration over μ

contributes(
π

Amn

)1/2

exp

(−9A2
3(nμ2 + mν2)

2

4Amn
+ O

(
n−1)). (38)

The second step is to integrate with respect to σ the integrand

exp

(
−Anμ2 −

m−1∑
j=1

αj∗σ 2
j − 9A2

3n

4Am
μ2

2 − iA3nμ3 − 3iA3cnμ1μ2

− i

m−1∑
j=1

βj∗σ 3
j + i

m−1∑
j,j ′=1

gjj ′σjσ
2
j ′ + i

m−1∑
j=1

n−1∑
k=1

(
ujkσj τ

2
k + vjkσ

2
j τk

)
+
(

6A4 − 9A2
3

2A

)
μ2ν2 + A4nμ4 + O

(
n−1)). (39)

This is accomplished by an appeal to Theorem 4, presented in Appendix A. In the terminology
of that theorem, we have N = m − 1, δ(N) = O(n−1), ε′ = 3

2ε, ε′′ = 5
3ε, ε′′′ = 3ε, ε̄ = 6ε, and

ε̂(N) = ε + o(1) is defined by 2n−1/2+ε = N−1/2+ε̂ . Furthermore,

Â = An

m − 1
, âj = −αj∗ +

(
6A4 − 9A2

3

2A

)
ν2 + i

n−1∑
k=1

vjkτk,

B̂j = − iA3n

m − 1
− i

m − 1
βj∗, Ĉjj ′ = −3iA3cn + igjj ′ ,

Êj = A4n

m − 1
, F̂jj ′ = −9A2

3n

4Am
,

Ĵj = i

n−1∑
ujkτ

2
k .
k=1
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We can take Δ = 3
4 , and calculate that

3

4Â2N

N∑
j=1

Êj + 1

4Â2N2

N∑
j,j ′=1

F̂jj ′ = m

n

(
3A4

4A2
− 9A2

3

16A3

)
+ Õ

(
n−1),

15

16Â3N

N∑
j=1

B̂2
j + 3

8Â3N2

N∑
j,j ′=1

B̂j Ĉjj ′ + 1

16Â3N3

N∑
j,j ′,j ′′=1

Ĉjj ′Ĉjj ′′

= −3A2
3m

8A3n
+ Õ

(
n−1),

1

2ÂN

N∑
j=1

âj + 1

4Â2N2

N∑
j=1

â2
j = − 1

2An
α∗∗ + 1

4A2n2

m−1∑
j=1

(αj∗)2

+ m

n

(
3A4

A
− 9A2

3

4A2

)
ν2 + i

2An

n−1∑
k=1

v∗kτk + Õ
(
n−1/2),

Ẑ = Z1 = exp

(
3A2

3m

8A3n
+ Õ(n−1)

)
= O(1) exp

(
(1 − 2λ)2m

24An

)
. (40)

Applying Theorem 4, we see that Θ2 = Õ(n−1/2), and so integration with respect to σ con-
tributes a τ -free factor(

π

An

)(m−1)/2

exp

(
m

n

(
3A4

4A2
− 15A2

3

16A3

)
− 1

2An
α∗∗

+ 1

4A2n2

m−1∑
j=1

(αj∗)2 + Õ
(
n−1/2)+ O

(
n−3/4Z1

))
. (41)

By the conditions of Theorem 1, Z1 � n1/5, so Õ(n−1/2) + O(n−3/4Z1) = Õ(n−1/2) = o(1) as
required by Theorem 4.

Finally, we need to integrate over τ . Collecting the remaining terms from (36), and the terms
involving τ from (38) and (40), we have an integrand equal to

exp

(
−Amν2 +

(
3A4m

An
− 9A2

3m

4A2n

)
ν2 − 9A2

3m

4An
ν2

2 + A4mν4 − iA3mν3 − 3iA3dmν2ν1

−
n−1∑
k=1

α∗kτ
2
k − i

n−1∑
k=1

β∗kτ
3
k + i

2An

n−1∑
k=1

v∗kτk + i

n−1∑
k,k′=1

hkk′τkτ
2
k′ + Õ

(
n−1/2)).

In the terminology of Theorem 4, N = n − 1, δ(N) = Õ(n−1/2), ε′ = 3
2ε, ε′′ = 5

3ε, ε′′′ = 3ε,

ε̄ = 4ε, and ε̂(N) = ε + o(1) is defined by 2m−1/2+ε = N−1/2+ε̂ . Furthermore,

Â = Am

n − 1
, âk = 3A4m

An
− 9A2

3m

4A2n
− α∗k,

B̂k = − iA3m − i
β∗k, Ĉkk′ = −3iA3dm + ihkk′ ,
n − 1 n − 1
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Êk = A4m

n − 1
, F̂kk′ = −9A2

3m

4An
,

Ĵk = i

2An
v∗k.

We can take Δ = 3
4 again and calculate that

3

4Â2N

N∑
k=1

Êk + 1

4Â2N2

N∑
k,k′=1

F̂kk′ = n

m

(
3A4

4A2
− 9A2

3

16A3

)
+ Õ

(
n−1),

15

16Â3N

N∑
k=1

B̂2
k + 3

8Â3N2

N∑
k,k′=1

B̂j Ĉkk′ + 1

16Â3N3

N∑
k,k′,k′′=1

Ĉkk′Ĉkk′′

= − 3A2
3n

8A3m
+ Õ

(
n−1),

1

2ÂN

N∑
k=1

âk + 1

4Â2N2

N∑
k=1

â2
k = − 1

2Am
α∗∗ + 1

4A2m2

n−1∑
k=1

(α∗k)
2

− 9A2
3

8A3
+ 3A4

2A2
+ Õ

(
n−1/2),

Ẑ = Z2 = exp

(
3A2

3n

8A3m
+ Õ

(
n−1))= O(1) exp

(
(1 − 2λ)2n

24Am

)
.

We again find that Θ2 = Õ(n−1/2). Including the contributions from (38) and (41), we obtain∫
Q

E2 =
(

π

Amn

)1/2(
π

An

)(m−1)/2(
π

Am

)(n−1)/2

× exp

(
−9A2

3

8A3
+ 3A4

2A2
+
(

m

n
+ n

m

)(
3A4

4A2
− 15A2

3

16A3

)

−
(

1

2Am
+ 1

2An

)
α∗∗ + 1

4A2m2

n−1∑
k=1

(α∗k)
2

+ 1

4A2n2

m−1∑
j=1

(αj∗)2 + Õ
(
n−1/2)Z2

)
. (42)

Using (13) and the conditions of Theorem 1, we calculate that

α∗∗ = −1

2

(
R

n
+ C

m

)
+ Õ

(
n1/2),

m−1∑
j=1

(αj∗)2 = 1

4
(1 − 2λ)2R + Õ

(
n3/2),

n−1∑
k=1

(α∗k)
2 = 1

4
(1 − 2λ)2C + Õ

(
n3/2),

Õ
(
n−1/2)Z2 = Õ

(
n−1/2)n2a/5 = O

(
n−b

)
.
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Substituting these values into (42) together with the actual values of A,A3,A4, we conclude that∫
Q

E2 =
(

π

Amn

)1/2(
π

An

)(m−1)/2(
π

Am

)(n−1)/2

× exp

(
−1

2
− 1 − 2A

24A

(
m

n
+ n

m

)
+ 1

4A

(
1

m
+ 1

n

)(
R

n
+ C

m

)
+ 1 − 8A

16A2

(
R

n2
+ C

m2

)
+ O

(
n−b

))
. (43)

We next infer a estimate of
∫
Q |E2|. The calculation that leads to (42) remains valid if we set

all the values A3, βjk , gjj ′ , hkk′ , ujk and vjk to zero, which is the same as replacing L2 by its
real part. Since |E2| = exp(Re(L2)), this gives∫

Q

|E2| = exp

(
9A2

3

8A3
+ 15A2

3

16A3

(
m

n
+ n

m

)
+ o(1)

)∫
Q

E2

= exp

(
(1 − 2λ)2

8A

(
1 + 5n

6m
+ 5m

6n

)
+ o(1)

)∫
Q

E2

= O
(
na
)∫
Q

E2 (44)

under the assumptions of Theorem 1. The third term of (37) can now be identified:

Õ
(
n−1/2)∫

Q

|E2| = Õ
(
n−1/2)na

∫
Q

E2 = O
(
n−b

)∫
Q

E2, (45)

where, as always, we suppose that ε is sufficiently small.
Finally, we consider the second term of (37), namely∫

Q∩Mc

|E2|,

which we will bound as a fraction of
∫
Q |E2| using a statistical technique. The following is a

well-known result of Hoeffding [3].

Lemma 3. Let X1,X2, . . . ,XN be independent random variables such that EXi = 0 and
|Xi | � M for all i. Then, for any t � 0,

Prob

(
N∑

i=1

Xi � t

)
� exp

(
− t2

2NM2

)
.

Now consider |E2| = exp(Re(L2)). Write M = M1 ∩M2, where

M1 = {|μ1| � m1/2n−1/2+3ε
}

and M2 = {|ν1| � n1/2m−1/2+3ε
}
.

For fixed values of μ and σ , Re(L2) separates over τ1, τ2, . . . , τn−1 and therefore, apart from
normalization, it is the joint density of independent random variables X1,X2, . . . ,Xn−1 which
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satisfy EXk = 0 (by symmetry) and |Xk| � 2m−1/2+ε (by the definition of Q). By Lemma 3,
the fraction of the integral over τ (for fixed μ,σ ) that has ν1 � n1/2m−1/2+3ε is at most
exp(−m4ε/2). By symmetry, the same bound holds for ν1 � −n1/2m−1/2+3ε . Since these bounds
are independent of μ and σ , we have∫

Q∩Mc
2

|E2| � 2 exp
(−m4ε/2

)∫
Q

|E2|.

By the same argument,∫
Q∩Mc

1

|E2| � 2 exp
(−n4ε/2

)∫
Q

|E2|.

Therefore we have in total that∫
Q∩Mc

|E2| � 2
(
exp

(−m4ε/2
)+ exp

(−n4ε/2
))∫

Q

|E2| � O
(
n−b

)∫
Q

E2, (46)

as for (45). Applying (37) with (43), (45) and (46), we find that
∫
Q∩M E1 is given by (43).

Multiplying by the Jacobians of the transformations T2 and T3, we find that Theorem 2 is proved
for S ′ given by (33).

5. Bounding the remainder of the integral

In the previous section, we estimated the value of the integral IR′(s, t), which is the same as
I (s, t) except that it is restricted to a certain region R′ ⊇ R (see (21)–(23)). In this section, we
extend this to an estimate of I (s, t) by showing that the remainder of the region of integration
contributes negligibly.

Precisely, we show the following.

Theorem 3. Let F(θ ,φ) be the integrand of I (s, t) as defined in (21). Then, under the conditions
of Theorem 1,∫

Rc

∣∣F(θ ,φ)
∣∣dθ dφ = O

(
n−1)∫

R′
F(θ ,φ) dθ dφ.

For 1 � j � m, 1 � k � n, let Ajk = A + αjk = 1
2λjk(1 − λjk) (recall (25)), and define

Amin = minjk Ajk = A + Õ(n−1/2). We begin with two technical lemmas whose proofs are
omitted.

Lemma 4.∣∣F(θ ,φ)
∣∣= m∏

j=1

n∏
k=1

fjk(θj + φk),

where

fjk(z) =
√

1 − 4Ajk(1 − cos z).
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Moreover, for all real z,

0 � fjk(z) � exp

(
−Ajkz

2 + 1

12
Ajkz

4
)

.

Lemma 5. For all c > 0,

8π/75∫
−8π/75

exp

(
c

(
−x2 + 7

3
x4
))

dx �
√

π/c exp(3/c).

Proof of Theorem 3. Our approach will be to bound
∫ |F(θ ,φ)| over a variety of regions whose

union covers Rc . To make the comparison of these bounds with
∫
R′ F(θ ,φ) easier, we note that∫

R′
F(θ ,φ) dθ dφ = exp

(
O
(
mε + nε

))
I0 = exp

(
O
(
m3ε + n3ε

))
I1, (47)

where

I0 =
(

π

A••

)1/2 m∏
j=1

(
π

Aj•

)1/2 n∏
k=1

(
π

A•k

)1/2

,

I1 =
(

π

An

)m/2(
π

Am

)n/2

.

To see this, expand

Aj• = An + αj• = An exp

(
αj•
An

− α2
j•

2A2n2
+ · · ·

)
,

and similarly for A•k , and compare the result to Theorem 2 using the assumptions of Theorem 1.
It may help to recall the calculation following (42).

Take κ = π/300 and define x0, x1, . . . , x299 by x� = 2�κ . For any �, let S1(�) be the set of
(θ ,φ) such that θj ∈ [x� −κ, x� +κ] for at least κm/π values of j and φk /∈ [−x� −2κ,−x� +2κ]
for at least nε values of k. For (θ ,φ) ∈ S1(�), θj + φk /∈ [−κ, κ] for at least κmnε/π pairs (j, k)

so, by Lemma 4, |F(θ ,φ)| � exp(−c1Aminmnε) for some c1 > 0 which is independent of �.
Next define S2(�) to be the set of (θ ,φ) such that θj ∈ [x� − κ, x� + κ] for at least κm/π

values of j , φk ∈ [−x� −2κ,−x� +2κ] for at least n−nε values of k and θj /∈ [x� −3κ, x� +3κ]
for at least mε values of j . By the same argument with the roles of θ and φ reversed, |F(θ ,φ)| �
exp(−c2Aminm

εn) for some c2 > 0 independent of � when (θ ,φ) ∈ S2(�).
Now define R1(�) to be the set of pairs (θ ,φ) such that θj ∈ [x� − 3κ, x� + 3κ] for at least

m − mε values of j , and φk ∈ [−x� − 3κ,−x� + 3κ] for at least n − nε values of k. By the
pigeonhole principle, for any θ there is some � such that [x� − κ, x� + κ] contains at least κm/π

values of θj . Therefore,(
299⋃
�=0

R1(�)

)c

⊆
299⋃
�=0

(
S1(�) ∪ S2(�)

)
.

Since the total volume of (
⋃

� R1(�))
c is at most (2m)m+n, we find that for some c3 > 0,
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∫
(
⋃

� R1(�))
c

∣∣F(θ ,φ)
∣∣dθdφ � (2π)m+n

(
exp(−c3Aminmnε) + exp

(−c3Aminm
εn
))

� e−nI1. (48)

We are left with (θ ,φ) ∈⋃�R1(�). If we subtract x� from each θj and add x� to each φk the
integrand F(θ ,φ) is unchanged, so we can assume for convenience that � = 0 and that (θ ,φ) ∈
R1 = R1(0). The bounds we obtain on parts of the integral we seek to reject will be at least
1/300 of the total and thus be of the right order of magnitude. We will not mention this point
again.

For a given θ , partition {1,2, . . . ,m} into sets J0 = J0(θ), J1 = J1(θ) and J2 = J2(θ), con-
taining the indices j such that |θj | � 3κ , 3κ < |θj | � 15κ and |θj | > 15κ , respectively. Similarly
partition {1,2, . . . , n} into K0 = K0(φ), K1 = K1(φ) and K2 = K2(φ). The value of |F(θ ,φ)|
can now be bounded using

fjk(θj + φk)

�

⎧⎨⎩ exp(−Amin(θj + φk)
2 + 1

12Amin(θj + φk)
4) if (j, k) ∈ (J0 ∪ J1) × (K0 ∪ K1),√

1 − 4Amin(1 − cos(12κ)) � e−Amin/64 if (j, k) ∈ (J0 × K2) ∪ (J2 × K0),

1 otherwise.

Let I2(m2, n2) be the contribution to
∫
R1

|F(θ ,φ)| of those (θ ,φ) with |J2| = m2 and |K2| = n2.
Recall that |J0| > m − mε and |K0| > n − nε . We have

I2(m2, n2) �
(

m

m2

)(
n

n2

)
(2π)m2+n2

× exp

(
− 1

64
Amin

(
n − nε

)
m2 − 1

64
Amin

(
m − mε

)
n2

)
I ′

2(m2, n2), (49)

where

I ′
2(m2, n2) =

15κ∫
−15κ

· · ·
15κ∫

−15κ

exp

(
−Amin

∑′

jk

(θj + φk)
2 + 1

12
Amin

∑′

jk

(θj + φk)
4
)

dθ ′ dφ′,

and the primes denote restriction to j ∈ J0 ∪ J1 and k ∈ K0 ∪ K1. Write m′ = m − m2 and
n′ = n − n2 and define θ̄

′ = (m′)−1∑′
j θj , θ̆j = θj − θ̄

′
for j ∈ J0 ∪ J1, φ̄

′ = (n′)−1∑′
k φk ,

φ̆k = φk − φ̄
′

for k ∈ K0 ∪ K1, ν′ = φ̄
′ + θ̄

′
and δ′ = θ̄

′ − φ̄
′
. Change variables from (θ ′,φ′) to

{θ̆j | j ∈ J3}∪ {φ̆k | k ∈ K3}∪ {ν′, δ′}, where J3 is some subset of m′ − 1 elements of J0 ∪J1 and
K3 is some subset of n′ − 1 elements of K0 ∪ K1. From Section 4 we know that the Jacobian of
this transformation is m′n′/2. The integrand of I ′

2 can now be bounded using∑′

jk

(θj + φk)
2 = n′∑′

j

θ̆2
j + m′∑′

k

φ̆2
k + m′n′ν′2

and ∑′

jk

(θj + φk)
4 � 27n′∑′

j

θ̆4
j + 27m′∑′

k

φ̆4
k + 27m′n′ν′4.

The latter follows from the inequality (x + y + z)4 � 27(x4 + y4 + z4) valid for all x, y, z.
Therefore,
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I ′
2(m2, n2) � O(1)

m′n′

30κ∫
−30κ

30κ∫
−30κ

· · ·
30κ∫

−30κ

exp

(
Aminn

′∑′

j

g(θ̆j ) + Aminm
′∑′

k

g(φ̆k)

+ Aminm
′n′g(ν′)

)
dθ̆j∈J3 dφ̆k∈K3 dν′,

where g(z) = −z2 + 9
4z4. Since g(z) � 0 for |z| � 30κ , and we only need an upper bound, we

can restrict the summations in the integrand to j ∈ J3 and k ∈ K3. The integral now separates
into m′ + n′ − 1 one-dimensional integrals and Lemma 5 (by monotonicity) gives that

I ′
2(m2, n2) = O(1)

π(m′+n′)/2

A
(m′+n′−1)/2
min (m′)n′/2−1(n′)m′/2−1

× exp
(
O
(
m′/(Aminn

′) + n′/(Aminm
′)
))

.

Applying (47) and (49), we find that

mε∑
m2=0

nε∑
n2=0

m2+n2�1

I2(m2, n2) = O
(
e−c4Am + e−c4An

)
I1 (50)

for some c4 > 0.
We have now bounded contributions to the integral of |F(θ ,φ)| from everywhere outside the

region

X = {
(θ ,φ)

∣∣ |θj |, |φk| � 15κ for 1 � j � m, 1 � k � n
}
.

By Lemma 4, we have for (θ ,φ) ∈ Ĉm+n (which includes X ) that

∣∣F(θ ,φ)
∣∣� exp

(
−

m∑
j=1

n∑
k=1

Ajk(θ̂j + φ̂k + ν)2 + 1

12

m∑
j=1

n∑
k=1

Ajk(θ̂j + φ̂k + ν)4

)
,

where θ̂j = θj − θ̄ , φ̂k = φk − φ̄ and ν = θ̄ + φ̄. As before, the integrand is independent of
δ = θ̄ − φ̄ and our notation will tend to ignore δ for that reason; for our bounds it will suffice to
remember that δ has a bounded range.

We proceed by exactly diagonalizing the (m + n + 1)-dimensional quadratic form. Since∑m
j=1 θ̂j =∑n

k=1 φ̂k = 0, we have

m∑
j=1

n∑
k=1

Ajk(θ̂j + φ̂k + ν)2 =
m∑

j=1

Aj•θ̂2
j +

n∑
k=1

A•kφ̂2
k + A••ν2

+ 2
m∑

j=1

n∑
k=1

αjkθ̂j φ̂k + 2ν

m∑
j=1

αj•θ̂j + 2ν

n∑
k=1

α•kφ̂k.

This is almost diagonal, because αjk = Õ(n−1/2), and we can correct it with the slight addi-
tional transformation (I + X−1Y)−1/2 described by Lemma 1, where X is a diagonal matrix
with diagonal entries Aj•, A•k and A••. The matrix Y has zero diagonal and other entries of
magnitude Õ(n−1/2) apart from the row and column indexed by ν, which have entries of mag-
nitude Õ(n1/2). By the same argument as used in Section 4.2, all eigenvalues of X−1Y have
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magnitude Õ(n−1/2), so the transformation is well defined. The new variables {ϑ̂j }, {ϕ̂k} and ν̇

are related to the old by

(θ̂1, . . . , θ̂m, φ̂1, . . . , φ̂n, ν)T = (
I + X−1Y

)−1/2
(ϑ̂1, . . . , ϑ̂m, ϕ̂1, . . . , ϕ̂n, ν̇)T .

We will keep the variable δ as a variable of integration but, as noted before, our notation will
generally ignore it.

More explicitly, for some d1, . . . , dm, d ′
1, . . . , d

′
n = Õ(n−3/2), we have uniformly over j =

1, . . . ,m, k = 1, . . . , n that

θ̂j = ϑ̂j +
m∑

q=1

Õ
(
n−2)ϑ̂q +

n∑
k=1

Õ
(
n−3/2)ϕ̂k + Õ

(
n−1/2)ν̇,

φ̂k = ϕ̂k +
m∑

j=1

Õ
(
n−3/2)ϑ̂j +

n∑
q=1

Õ
(
n−2)ϕ̂q + Õ

(
n−1/2)ν̇,

ν = ν̇ +
m∑

j=1

dj ϑ̂j +
n∑

k=1

d ′
kϕ̂k + Õ

(
n−1)ν̇. (51)

Note that the expressions O() in (51) represent values that depend on m,n, s, t but not on
{ϑ̂j }, {ϕ̂k}, ν̇.

The region of integration X is (m+n)-dimensional. In place of the variables (θ ,φ) we can use
(θ̂ , φ̂, ν, δ) by applying the identities θ̂m = −∑m−1

j=1 θ̂j and φ̂n = −∑n−1
k=1 φ̂k . (Recall that θ̂ and

φ̂ do not include θ̂m and φ̂n.) The additional transformation (51) maps the two just-mentioned
identities into identities that define ϑ̂m and ϕ̂n in terms of (ϑ̂, ϕ̂, ν̇), where ϑ̂ = (ϑ̂1, . . . , ϑ̂m−1)

and ϕ̂ = (ϕ̂1, . . . , ϕ̂n−1). These have the form

ϑ̂m = −
m−1∑
j=1

(
1 + Õ

(
n−1))ϑ̂j +

n−1∑
k=1

Õ
(
n−1/2)ϕ̂k + Õ

(
n1/2)ν̇,

ϕ̂n =
m−1∑
j=1

Õ
(
n−1/2)ϑ̂j −

n−1∑
k=1

(
1 + Õ

(
n−1))ϕ̂k + Õ

(
n1/2)ν̇. (52)

Therefore, we can now integrate over (ϑ̂, ϕ̂, ν̇, δ). The Jacobian of the transformation from (θ ,φ)

to (θ̂ , φ̂, ν, δ) is mn/2, as in Section 4. The Jacobian of the transformation T4(ϑ̂, ϕ̂, ν̇) = (θ̂ , φ̂, ν)

defined by (51) can be seen to be 1 + Õ(n−1/2) by Lemma 2, using the fact that the ∞-norm
of the matrix of partial derivatives is Õ(n−1/2). This matrix has order m + n − 1 and can be
obtained by substituting (52) into (51).

The transformation T4 changes the region of integration only by a factor 1+ Õ(n−1/2) in each
direction, since the inverse of (51) has exactly the same form except that the constants {dj }, {d ′

k},
while still of magnitude Õ(n−3/2), may be different. Therefore, the image of region X lies inside
the region

Y = {
(ϑ̂, ϕ̂, ν̇)

∣∣ |ϑ̂j |, |ϕ̂k| � 31κ (1 � j � m, 1 � k � n), |ν̇| � 31κ
}
.

We next bound the value of the integrand in Y . By repeated application of the inequality
xy � 1x2 + 1y2, we find that
2 2
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1

12

m∑
j=1

n∑
k=1

Ajk(θ̂j + φ̂k + ν)4 � 7

3

(
m∑

j=1

Aj•ϑ̂4
j +

n∑
k=1

A•kϕ̂
4
k + A••ν̇4

)
,

where we have chosen 7
3 as a convenient value greater than 9

4 . Now define h(z) = −z2 + 7
3z4.

Then, for (ϑ̂, ϕ̂, ν̇) ∈ Y ,

∣∣F(θ ,φ)
∣∣� exp

(
m∑

j=1

Aj•h(ϑ̂j ) +
n∑

k=1

A•kh(ϕ̂k) + A••h(ν̇)

)

� exp

(
m−1∑
j=1

Aj•h(ϑ̂j ) +
n−1∑
k=1

A•kh(ϕ̂k) + A••h(ν̇)

)
(53)

= exp
(
A••h(ν̇)

)m−1∏
j=1

exp
(
Aj•h(ϑ̂j )

) n−1∏
k=1

exp
(
A•kh(ϕ̂k)

)
, (54)

where the second line holds because h(z) � 0 for |z| � 31κ .
Define

W0 =
{
(ϑ̂, ϕ̂, ν̇) ∈ Y

∣∣∣ |ϑ̂j | � 1

2
n−1/2+ε (1 � j � m − 1),

|ϕ̂k| � 1

2
m−1/2+ε (1 � k � n − 1), |ν̇| � 1

2
(mn)−1/2+2ε

}
,

W1 = Y −W0,

W2 =
{

(ϑ̂, ϕ̂, ν̇) ∈ Y
∣∣∣ ∣∣∣∣∣

m−1∑
j=1

dj ϑ̂j +
n−1∑
k=1

d ′
kϕ̂k

∣∣∣∣∣� n−5/4

}
.

Also define similar regions W ′
0,W ′

1,W ′
2 by omitting the variables ϑ̂1, ϕ̂1 instead of ϑ̂m, ϕ̂n start-

ing at (53). Using (51), we see that T4, and the corresponding transformation that omits ϑ̂1 and
ϕ̂1, map R to a superset of W0 ∩ W2 ∩ W ′

1 ∩ W ′
2. Therefore, X − R is mapped to a subset of

W1 ∪ (W0 −W2) ∪W ′
1 ∪ (W ′

0 −W ′
2) and it will suffice to find a tight bound on the integral in

each of the four latter regions. Denoting the right side of (54) by F0(ϑ̂, ϕ̂, ν̇), Lemma 5 gives∫
Y

F0(ϑ̂, ϕ̂, ν̇) dϑ̂ dϕ̂ dν̇ = exp
(
O
(
mε + nε

))
I0. (55)

Also note that

31κ∫
z0

exp
(
ch(z)

)= O(1) exp
(
ch(z0)

)
(56)

for c, z0 > 0 and z0 = o(1), since h(z) � h(z0) for z0 � z � 31κ . By applying (56) to each of the
factors of (54) in turn,∫

F0(ϑ̂, ϕ̂, ν̇) dϑ̂ dϕ̂ dν̇ = O
(
e−c6Am2ε + e−c6An2ε)

I0 (57)
W1



60 E.R. Canfield et al. / Journal of Combinatorial Theory, Series A 115 (2008) 32–66
for some c6 > 0 and so, by (55) and (57),∫
W0

F0(ϑ̂, ϕ̂, ν̇) dϑ̂ dϕ̂ dν̇ = exp
(
O
(
mε + nε

))
I0.

Applying Lemma 3 twice, once to the variables d1ϑ̂1, . . . , dm−1ϑ̂m−1, d
′
1ϕ̂1, . . . , d

′
n−1ϕ̂n−1 and

once to their negatives, using M = Õ(n−2), N = m + n − 2 and t = n−5/4, we find that∫
W0−W2

F0(ϑ̂, ϕ̂, ν̇) dϑ̂ dϕ̂ dν̇ = O
(
e−n1/4) ∫

W0

F0(ϑ̂, ϕ̂, ν̇) dϑ̂ dϕ̂ dν̇

= O
(
e−n1/5)

I0. (58)

Finally, parallel computations give the same bounds on the integrals over W ′
1 and W ′

0 −W ′
2.

We have now bounded
∫ |F(θ ,φ)| in regions that together cover the complement of R. Col-

lecting these bounds from (48), (50), (57), (58), and the above-mentioned analogues of (57) and
(58), we conclude that∫

Rc

∣∣F(θ ,φ)
∣∣dθ dφ = O

(
e−c7Am2ε + e−c7An2ε)

I0

for some c7 > 0, which implies the theorem by (47). �
Appendix A. Estimating an integral

In this appendix we estimate the value of a certain multi-dimensional integral. A similar in-
tegral appeared in [7] and variations of it appeared in [4–6]. However, none of the previously
published variations meet our present requirements entirely. We will meet them here, and also
introduce a new method of proof that gives a better error term.

It is intended that this appendix be notationally independent of the rest of the paper. We have
used new symbols where possible, but even in the few remaining exceptions, assumptions about
the values of variables stated earlier do not apply here.

Theorem 4. Let ε′, ε′′, ε′′′, ε̄,Δ be constants such that 0 < ε′ < ε′′ < ε′′′, ε̄ � 0, and 0 < Δ < 1.
The following is true if ε′′′ and ε̄ are sufficiently small.

Let Â = Â(N) be a real-valued function such that Â(N) = Ω(N−ε′
). Let âj = âj (N),

B̂j = B̂j (N), Ĉjk = Ĉjk(N), Êj = Êj (N), F̂jk = F̂jk(N) and Ĵj = Ĵj (N) be complex-
valued functions (1 � j, k � N) such that B̂j , Ĉjk, Êj , F̂jk = O(Nε̄), âj = O(N1/2+ε̄), and
Ĵj = O(N−1/2+ε̄), uniformly over 1 � j, k � N . Suppose that

f (z) = exp

(
−ÂN

N∑
j=1

z2
j +

N∑
j=1

âj z
2
j + N

N∑
j=1

B̂j z
3
j +

N∑
j,k=1

Ĉjkzj z
2
k

+ N

N∑
j=1

Êj z
4
j +

N∑
j,k=1

F̂jkz
2
j z

2
k +

N∑
j=1

Ĵj zj + δ(z)

)

is integrable for z = (z1, z2, . . . , zN) ∈ UN and δ(N) = maxz∈UN
|δ(z)| = o(1), where
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UN = {
z ⊆ R

N
∣∣ |zj | � N−1/2+ε̂ for 1 � j � N

}
,

where ε̂ = ε̂(N) satisfies ε′′ � 2ε̂ � ε′′′. Then, provided the O() term in the following converges
to zero,∫

UN

f (z) dz =
(

π

ÂN

)N/2

exp
(
Θ1 + Θ2 + O

((
N−Δ + δ(N)

)
Ẑ
))

,

where

Θ1 = 1

2ÂN

N∑
j=1

âj + 1

4Â2N2

N∑
j=1

â2
j + 15

16Â3N

N∑
j=1

B̂2
j + 3

8Â3N2

N∑
j,k=1

B̂j Ĉjk

+ 1

16Â3N3

N∑
j,k,�=1

ĈjkĈj� + 3

4Â2N

N∑
j=1

Ej + 1

4Â2N2

N∑
j,k=1

Fjk,

Θ2 = 1

6Â3N3

N∑
j=1

â3
j + 3

2Â3N2

N∑
j=1

âj Êj + 45

16Â4N2

N∑
j=1

âj B̂
2
j

+ 1

4Â3N3

N∑
j,k=1

(âj + âk)F̂jk + 3

4Â2N

N∑
j=1

B̂j Ĵj + 1

4Â2N2

N∑
j,k=1

ĈjkĴj

+ 1

16Â4N4

N∑
j,k,�=1

(âj + 2âk)ĈjkĈj� + 3

8Â4N3

N∑
j,k=1

(2âj + âk)B̂j Ĉjk,

Ẑ = exp

(
1

4Â2N2

N∑
j=1

Im(âj )
2 + 15

16Â3N

N∑
j=1

Im(B̂j )
2

+ 3

8Â3N2

N∑
j,k=1

Im(B̂j ) Im(Ĉjk) + 1

16Â3N3

N∑
j,k,�=1

Im(Ĉjk) Im(Ĉj�)

)
.

Proof. Our method of proof will be integration over one variable at a time. This method is
conceptually simple but technically challenging. Assistance from a computer-algebra system is
recommended.

Let Hj1,j2,...,jk
be a functions of N for each 1 � j1, j2, . . . , jk � N and let p1,p2, . . . , pk be

non-negative integers. Let 1 � j � N + 1. Define the generalized moment

ηj (Hj1,...,jk
| p1, . . . , pk)(z) =

∑
j1,...,jk

Hj1,...,jk
z
p1
j1

· · · zpk

jk
,

where the summation is over{
(j1, . . . , jk)

∣∣ ∣∣{j1, . . . , jk}
∣∣= k, 1 � ji � j − 1 if pi = 0, j � ji � N if pi > 0

}
.

We will customarily omit the argument z as it will be clear from the context. Note that the indices
j1, . . . , jk are reserved to this notation and always index the position their name suggests; for
example
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ηj (αj2 | 3,0) =
∑

j�j1�N
1�j2�j−1

αj2z
3
j1

.

We also need the defective moment η′
j (Hj1,...,jk

| p1,p2, . . . , pk) which is the same as
ηj (Hj1,...,jk

| p1,p2, . . . , pk) except that the index value j is forbidden; that is, the condition
j1, . . . , jk �= j is added to the domain of summation.

Some properties of these moments that we require are listed below. Assume that z ∈ UN .
Then ∣∣ηj (Hj1,...,jk

| p1, . . . , pk)
∣∣� max|Hj1,...,jk

| Nk+(−1/2+ε̄)(p1+···+pk), (59)

η1(Hj1,...,jk
| p1, . . . , pk) = 0 if pi = 0 for any i, (60)

ηN+1(Hj1,...,jk
| p1, . . . , pk) = 0 if pi > 0 for any i, (61)

ηj (Hj1,...,jk
| p1, . . . , pk)

= η′
j (Hj1,...,jk

| p1, . . . , pk)

+
∑

i|pi>0

z
pi

j η′
j (Hj1,...,ji−1,j,ji ,...,jk−1 | p1, . . . , pi−1,pi+1, . . . , pk), (62)

ηj+1(Hj1,...,jk
| p1, . . . , pk)

= η′
j (Hj1,...,jk

| p1, . . . , pk)

−
∑

i|pi=0

η′
j (Hj1,...,ji−1,j,ji ,...,jk−1 | p1, . . . , pi−1,pi+1, . . . , pk). (63)

The last two equalities require j � N .
The product of generalized moments ηj (Pj1,...,jk

| p1, . . . , pk) and ηj (Qj1,...,j�
| q1, . . . , q�)

can be written as a sum of generalized moments. Define Φ to be the set of injections
φ : {1,2, . . . , �} → {1,2, . . . , k + �} such that (a) φ({1,2, . . . , �}) ∪ {1,2, . . . , k} = {1,2, . . . , |φ|}
for some integer |φ| depending on φ, (b) for 1 � i < j � �, if φ(i),φ(j) > k then φ(i) < φ(j),
and (c) for 1 � i � �, qi = 0 ⇔ (φ(i) > k or pφ(i) = 0). For φ ∈ Φ and 1 � i � |φ|, define
ri = pi + qφ−1(i), where the first term is omitted if i > k and the second term is omitted if i is
not in the range of φ. Then

ηj (Pj1,...,jk
| p1, . . . , pk)ηj (Qj1,...,j�

| q1, . . . , q�)

=
∑
φ∈Φ

ηj (Pj1,...,jk
Qjφ(1),...,jφ(�)

| r1, . . . , r|φ|). (64)

For example,

ηj (αj1,j2 | 0,2)ηj (βj1 | 3) = ηj (αj1,j2βj3 | 0,2,3) + ηj (αj1,j2βj2 | 0,5),

where the two terms correspond to the injections φ(1) = 3 and φ(1) = 2. Exactly the same
formula holds for defective moments.

For 1 � j � N + 1, define

Fj (z) = ηj (−ÂN + âj1 | 2) + ηj (B̂j1N + Ĉj1j1 | 3) + ηj (Êj1N + F̂j1j1 | 4) + ηj (Ĵj1 | 1)

+ ηj (Ĉj2j1 | 2,1) + ηj (F̂j2j1 | 2,2) + ηj (Γ0 | 0) + ηj (Γ0,0 | 0,0)

+ ηj (Γ1,0 | 1,0) + ηj (Γ2,0 | 2,0) + ηj (Γ0,0,0 | 0,0,0) + ηj (Γ1,0,0 | 1,0,0)
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+ ηj (Γ1,1,0 | 1,1,0) + ηj (Γ2,0,0 | 2,0,0) + ηj (Γ2,1,0 | 2,1,0)

+ ηj (Γ2,2,0 | 2,2,0) + ηj (Γ1,0,0,0 | 1,0,0,0) + ηj (Γ1,1,1,0 | 1,1,1,0)

+ ηj (Γ2,1,0,0 | 2,1,0,0) + ηj (Γ2,2,1,0 | 2,2,1,0),

where

Γ0 = âj1

2ÂN
+ â2

j1

4Â2N2
+ â3

j1

6Â3N3
+ 3Ĵj1B̂j1

4Â2N
+ 3Êj1

4Â2N
+ 15B̂2

j1

16Â3N

+ 45âj1B̂
2
j1

16Â4N2
+ 3âj1Êj1

2Â3N2
,

Γ0,0 = F̂j2j1

4Â2N2
+ Ĉj2j1 Ĵj2

4Â2N2
+ 3Ĉj2j1B̂j2

8Â3N2
+ (âj1 + âj2)F̂j2j1

4Â3N3
+ 3(âj1 + 2âj2)Ĉj2j1B̂j2

8Â4N3
,

Γ1,0 = Ĉj1j2

2ÂN
+ âj2Ĉj1j2

2Â2N2
+ 45Ĉj1j2B̂

2
j2

16Â4N2
+ â2

j2
Ĉj1j2

2Â3N3
+ 3Ĉj1j2Êj2

2Â3N2
,

Γ2,0 = 3Ĉj2j1B̂j2

4Â2N
+ F̂j1j2 + F̂j2j1

2ÂN
+ Ĉj2j1 Ĵj2

2ÂN
+ âj2(F̂j1j2 + F̂j2j1)

2Â2N2
+ 3âj2Ĉj2j1B̂j2

2Â3N2
,

Γ0,0,0 = Ĉj3j1Ĉj3j2

16Â3N3
+ (2âj2 + âj3)Ĉj3j1Ĉj3j2

16Â4N4
,

Γ1,0,0 = (F̂j2j3 + F̂j3j2)Ĉj1j2

4Â3N3
+ 3Ĉj1j3Ĉj3j2B̂j3

4Â4N3
+ 3Ĉj3j2Ĉj1j2B̂j3

8Â4N3
,

Γ1,1,0 = Ĉj1j3Ĉj2j3

4Â2N2
+ âj3Ĉj1j3Ĉj2j3

2Â3N3
,

Γ2,0,0 = (âj2 + âj3)Ĉj3j2Ĉj3j1

4Â3N3
+ Ĉj3j1Ĉj3j2

4Â2N2
,

Γ2,1,0 = 3Ĉj2j3Ĉj3j1B̂j3

2Â3N2
+ (F̂j1j3 + F̂j3j1)Ĉj2j3

2Â2N2
,

Γ2,2,0 = Ĉj3j1Ĉj3j2

4ÂN
+ âj3Ĉj3j1Ĉj3j2

4Â2N2
,

Γ1,0,0,0 = Ĉj1j4Ĉj4j2Ĉj4j3

16Â4N4
+ Ĉj4j3Ĉj4j2Ĉj1j2

8Â4N4
,

Γ1,1,1,0 = Ĉj1j4Ĉj2j4Ĉj3j4

6Â3N3
,

Γ2,1,0,0 = Ĉj2j4Ĉj4j1Ĉj4j3

4Â3N3
+ Ĉj4j1Ĉj4j3Ĉj2j3

4Â3N3
,

Γ2,2,1,0 = Ĉj3j4Ĉj4j1Ĉj4j2

4Â2N2
.

Note that Fj (z) is independent of zi for i < j . The key properties of Fj (z) for z ∈ Un are

f (z) = exp
(
F1(z) + δ(z)

)
, (65)
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N−1/2+ε̂∫
−N−1/2+ε̂

exp
(
Fj (z)

)
dzj =

√
π

ÂN
exp

(
Fj+1(z) + O

(
N−1−Δ

))
(j � N). (66)

Equation (65) is easily seen after applying (60) to eliminate most of the terms. Proof of (66)
requires a tedious calculation which we now outline.

First, apply (62) to make explicit the dependence of Fj (z) on zj (a polynomial of degree 4).
Then expand

exp
(
Fj (z)

)= exp
(
R0(z)

)
exp

(−ÂNz2
j

)(
1 + R1(z)zj + R2(z)z

2
j + · · · + O

(
N−1−Δ

))
,

(67)

where each Ri(z) is independent of zj and contains defective moments only. As seen by ap-
plying (59), only a finite number of terms are required to achieve the requested error term. The
factor exp

(−ÂNz2
j

)
comes from the first term ηj (−ÂN | 2) of Fj (z). Products of moments that

occur need to be rewritten as sums using (64). Next, integrate (67) over zj using

N−1/2+ε̂∫
−N−1/2+ε̂

z2ke−ÂNz2
dz = (2k)!

k! (4ÂN)k

√
π

ÂN

(
1 + O

(
exp

(−cN2ε̂−ε′)))
,

for fixed k � 0, for some c > 0. Here we have used the assumptions that Â = Ω(N−ε′
) and

ε′ < ε′′ < 2ε̂. The result of the integration has the form√
π

ÂN
exp

(
R0(z)

)(
1 + S(z)

)=
√

π

ÂN
exp

(
R0(z) + log

(
1 + S(z)

))
.

Since S(z) = o(1) (in fact S(z) = O(N−1/2+k(ε′′+ε̄)) for some k), we can expand the logarithm
using (59) again to limit the expansion to finitely many terms. Finally, apply (63) to rewrite the
defective moments in terms of ordinary generalized moments. The result is the right side of (66).

If all the coefficients âj , B̂j , Ĉjk, Êj , F̂jk, Ĵj were real, we could apply (65) and (66) imme-
diately to find that∫

UN

f (z) dz =
(

π

ÂN

)N/2

exp
(
FN+1 + O

(
δ(N) + N−Δ

))
, (68)

noting that FN+1(z) is independent of z.
When the coefficients are complex, we must take more care. Equation (65) only allows us to

write ∫
UN

f (z) dz =
∫

UN

exp
(
F1(z)

)
dz + O

(
δ(N)

) ∫
UN

∣∣exp
(
F1(z)

)∣∣dz. (69)

Let F ∗
j (z) be the same as Fj (z) except that the coefficients âj , B̂j , Ĉjk, Êj , F̂jk, Ĵj are all

replaced by their real parts. Clearly∣∣exp
(
F1(z)

)∣∣= exp
(
F ∗

1 (z)
)
,

and so, as in (68),
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∫
UN

∣∣exp
(
F1(z)

)∣∣dz = O(1)

(
π

ÂN

)N/2

exp
(
F ∗

N+1

)
. (70)

From (66) we have for 1 � j � N that∣∣exp
(
Fj+1(z)

)∣∣= (
π

ÂN

)−1/2(
1 + O

(
N−1−Δ

))∣∣∣∣∫ exp
(
Fj (z)

)
dzj

∣∣∣∣
�
(

π

ÂN

)−1/2(
1 + O

(
N−1−Δ

))∫ ∣∣exp
(
Fj (z)

)∣∣dzj ,

so we have by induction starting with (70) that∫ ∣∣exp
(
Fj+1(z)

)∣∣dzj+1 · · ·dzN � O(1)

(
π

ÂN

)(N−j)/2

exp
(
F ∗

N+1

)
.

Returning to (66), we find that, for 1 � j � N ,∫
exp

(
Fj (z)

)
dzj · · ·dzN =

√
π

ÂN

∫
exp

(
Fj+1(z) + O

(
N−1−Δ

))
dzj+1 · · ·dzN

=
√

π

ÂN

∫
exp

(
Fj+1(z)

)
dzj+1 · · ·dzN

+ O
(
N−1−Δ

)√ π

ÂN

∫ ∣∣exp
(
Fj+1(z)

)∣∣dzj+1 · · ·dzN

=
√

π

ÂN

∫
exp

(
Fj+1(z)

)
dzj+1 · · ·dzN

+ O
(
N−1−Δ

)( π

ÂN

)(N−j+1)/2

exp
(
F ∗

N+1

)
.

By induction on j , this gives∫
UN

exp
(
F1(z)

)
dz =

(
π

ÂN

)N/2(
exp(FN+1) + O

(
N−Δ

)
exp

(
F ∗

N+1

))
,

which, together with (69) and (70) gives∫
UN

f (z) dz =
(

π

ÂN

)N/2(
exp(FN+1) + O

(
N−Δ + δ(N)

)
exp

(
F ∗

N+1

))

=
(

π

ÂN

)N/2

exp
(
FN+1 + O

(
N−Δ + δ(N)

)
Ẑ
)
, (71)

where Ẑ = exp(F ∗
N+1 − Re(FN+1)) and the last line is valid if (N−Δ + δ(N))Ẑ = o(1).

Applying (61) to the definition of Fj (z), we find that

FN+1 = Θ1 + Θ2 + O
(
N−Δ

)
,

from which it follows that Ẑ has the value in the theorem statement to within a multiplied con-
stant. Also note that Ẑ � 1, which is easiest to see by noting that the argument of the exponential
is a non-negative quadratic form for each j . The theorem now follows from (71). �
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