20,743 research outputs found
Recommended from our members
Viscous coupling of shear-free turbulence across nearly flat fluid interfaces
The interactions between shear-free turbulence in two regions (denoted as + and â on either side of a nearly flat horizontal interface are shown here to be controlled by several mechanisms, which depend on the magnitudes of the ratios of the densities, Ï+/Ïâ, and kinematic viscosities of the fluids, ÎŒ+/ÎŒâ, and the root mean square (r.m.s.) velocities of the turbulence, u0+/u0â, above and below the interface. This study focuses on gasâliquid interfaces so that Ï+/Ïâ âȘ 1 and also on where turbulence is generated either above or below the interface so that u0+/u0â is either very large or very small. It is assumed that vertical buoyancy forces across the interface are much larger than internal forces so that the interface is nearly flat, and coupling between turbulence on either side of the interface is determined by viscous stresses. A formal linearized rapid-distortion analysis with viscous effects is developed by extending the previous study by Hunt & Graham (J. Fluid Mech., vol. 84, 1978, pp. 209â235) of shear-free turbulence near rigid plane boundaries. The physical processes accounted for in our model include both the blocking effect of the interface on normal components of the turbulence and the viscous coupling of the horizontal field across thin interfacial viscous boundary layers. The horizontal divergence in the perturbation velocity field in the viscous layer drives weak inviscid irrotational velocity fluctuations outside the viscous boundary layers in a mechanism analogous to Ekman pumping. The analysis shows the following. (i) The blocking effects are similar to those near rigid boundaries on each side of the interface, but through the action of the thin viscous layers above and below the interface, the horizontal and vertical velocity components differ from those near a rigid surface and are correlated or anti-correlated respectively. (ii) Because of the growth of the viscous layers on either side of the interface, the ratio uI/u0, where uI is the r.m.s. of the interfacial velocity fluctuations and u0 the r.m.s. of the homogeneous turbulence far from the interface, does not vary with time. If the turbulence is driven in the lower layer with Ï+/Ïâ âȘ 1 and u0+/u0â âȘ 1, then uI/u0â ~ 1 when Re (=u0âLâ/Îœâ) â« 1 and R = (Ïâ/Ï+)(vâ/v+)1/2 â« 1. If the turbulence is driven in the upper layer with Ï+/Ïâ âȘ 1 and u0+/u0â â« 1, then uI/u0+ ~ 1/(1 + R). (iii) Nonlinear effects become significant over periods greater than Lagrangian time scales. When turbulence is generated in the lower layer, and the Reynolds number is high enough, motions in the upper viscous layer are turbulent. The horizontal vorticity tends to decrease, and the vertical vorticity of the eddies dominates their asymptotic structure. When turbulence is generated in the upper layer, and the Reynolds number is less than about 106â107, the fluctuations in the viscous layer do not become turbulent. Nonlinear processes at the interface increase the ratio uI/u0+ for sheared or shear-free turbulence in the gas above its linear value of uI/u0+ ~ 1/(1 + R) to (Ï+/Ïâ)1/2 ~ 1/30 for airâwater interfaces. This estimate agrees with the direct numerical simulation results from Lombardi, De Angelis & Bannerjee (Phys. Fluids, vol. 8, no. 6, 1996, pp. 1643â1665). Because the linear viscousâinertial coupling mechanism is still significant, the eddy motions on either side of the interface have a similar horizontal structure, although their vertical structure differs
Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow
Measurements were made of two components of the average and fluctuating velocities, and of the local self-diffusion coefficients in a flow of granular material. The experiments were performed in a 1 m-high vertical channel with roughened sidewalls and with polished glass plates at the front and the back to create a two-dimensional flow. The particles used were glass spheres with a nominal diameter of 3 mm. The flows were high density and were characterized by the presence of long-duration frictional contacts between particles. The velocity measurements indicated that the flows consisted of a central uniform regime and a shear regime close to the walls. The fluctuating velocities in the transverse direction increased in magnitude from the centre towards the walls. A similar variation was not observed for the streamwise fluctuations. The self-diffusion coefficients showed a significant dependence on the fluctuating velocities and the shear rate. The velocity fluctuations were highly anistropic with the streamwise components being 2 to 2.5 times the transverse components. The self-diffusion coefficients for the streamwise direction were an order-of-magnitude higher than those for the transverse direction. The surface roughness of the particles led to a decrease in the self-diffusion coefficients
Potential Economic Consequences of Local Nonconformity to Regional Land Use and Transportation Plans Using a Spatial Economic Model
To achieve the greenhouse gas (GHG) reduction targets that are required by Californiaâs global warming legislation (AB32), the state of California has determined that recent growth trends in vehicle miles traveled (VMT) must be curtailed. In recognition of this, Senate Bill 375 (SB375) requires regional governments to develop land use and transportation plans or Sustainable Community Strategies (SCSs) that will achieve regional GHG targets largely though reduced VMT. Although the bill requires such a plan, it does not require local governments to adopt general plans that conform to this plan. In California, it is local, not regional, governments that have authority over land development decisions. Instead, SB375 relies on democratic participatory processes and relatively modest financial and regulatory incentives for SCS implementation. As a result, it is quite possible that some local governments within a region may decide not to conform to their SCS. In this study, a spatial economic model (PECAS) is applied in the Sacramento region (California, U.S.) to understand what the economic and equity consequences might be to jurisdictions that do and do not implement SCS land use plans in a region. An understanding of these consequences provides insight into jurisdictionsâ motivations for compliance and thus, strategies for more effective implementation of SB375
Integrated maneuvering and life support system simulation Final report
Integrated maneuvering and life support system simulatio
Evaluation of a composite mobile holographic nondestructive test system
A simplified theoretical model for the interpretation of the double-exposure holographic interference fringe loci due to the general three-dimensional displacements was derived for the specific composite mobile holographic nondestructive test system. The model, representing a good approximation to a more tedious theoretical result, predicts that a combination of in-plane and out-of-plane displacements of the surface will produce concentric circular-shaped fringe patterns with locations of their center affected by the displacements. Appropriate experiments were designed and carried out for the test of the validity of the theory. These experiments include the taking of double-exposure holograms of in-plane translations and combined in-plane and out-of-plane translations. The simplified model agreed quite well with the experimental results. Experimentally observed effects due to the curvature of the test plate and the variations of the angles of incidence of the laser light suggest that in order for the simplified model to be able to predict the test results more accurately, incidence and reflection of the laser light should be chosen as nearly perpendicular to the surface of the tested object as possible
Letters between May Leland Hunt and William Kerr\u27s secretary
Letters concerning a position in the English department at Utah Agricultural College
Recommended from our members
A continuously updated, geospatially rectified database of utility-scale wind turbines in the United States.
Over 60,000 utility-scale wind turbines are installed in the United States as of October, 2019, representing over 97 gigawatts of electric power capacity; US wind turbine installations continue to grow at a rapid pace. Yet, until April 2018, no publicly-available, regularly updated data source existed to describe those turbines and their locations. Under a cooperative research and development agreement, analysts from three organizations collaborated to develop and release the United States Wind Turbine Database (USWTDB) - a publicly available, continuously updated, spatially rectified data source of locations and attributes of utility-scale wind turbines in the United States. Technical specifications and wind facility data, incorporated from five sources, undergo rigorous quality control. The location of each turbine is visually verified using high-resolution aerial imagery. The quarterly-updated data are available in a variety of formats, including an interactive web application, comma-separated values (CSV), shapefile, and application programming interface (API). The data are used widely by academic researchers, engineers and developers from wind energy companies, government agencies, planners, educators, and the general public
Phase transition in a log-normal Markov functional model
We derive the exact solution of a one-dimensional Markov functional model
with log-normally distributed interest rates in discrete time. The model is
shown to have two distinct limiting states, corresponding to small and
asymptotically large volatilities, respectively. These volatility regimes are
separated by a phase transition at some critical value of the volatility. We
investigate the conditions under which this phase transition occurs, and show
that it is related to the position of the zeros of an appropriately defined
generating function in the complex plane, in analogy with the Lee-Yang theory
of the phase transitions in condensed matter physics.Comment: 9 pages, 5 figures. v2: Added asymptotic expressions for the
convexity-adjusted Libors in the small and large volatility limits. v3: Added
one reference. Final version to appear in Journal of Mathematical Physic
- âŠ