52 research outputs found

    Study of cationic N-isopropylacrylamide-styrene copolymer latex particles using fluorescent probes

    Get PDF
    Monodisperse cationically charged core-shell poly[styrene/N-isopropylacrylamide] latexes, differing in their shell structure, were studied at temperatures around the lower critical solution temperature (LCST) of poly[N-isopropylacrylamide]. Near the LCST, a transition on the latex dimensions was observed by quasi-elastic light scattering measurements. The same transition could also be detected using the intensity ratio of the pyrene fluorescence vibronic bands, I1/I3, and the excimer to monomer fluorescence intensity ratio of 1,10-bis(1-pyrenyl)decane. The fluorescence spectra and decay curve measurements of 1,10-bis-(1-pyrenyl)decane provided a better understanding of both the hydrophilic-hydrophobic variation and the conformational changes occurring in the poly[N-isopropylacrylamide] shell of the latex particles upon temperature variation.J. M. G. Martinho is grateful for the support of this work from FCT. E. M. S. Castanheira acknowledges FCT for a grant (PRAXIS XXI/BPD/9968/96)

    Coupling of Rotational Motion with Shape Fluctuations of Core-shell Microgels Having Tunable Softness

    Full text link
    The influence of shape fluctuations on deformable thermosensitive microgels in aqueous solution is investigated by dynamic light scattering (DLS) and depolarized dynamic light scattering (DDLS). The systems under study consist of a solid core of polystyrene and a thermosensitive shell of cross-linked poly(N-isopropylacrylamide) (PNIPA) without and with embedded palladium nanoparticles. PNIPA is soluble in water, but has a lower critical solution temperature at 32 C (LCST). Below the LCST the PNIPA shell is swollen. Here we find that besides translational and rotational diffusion, the particles exhibit additional dynamics resulting from shape fluctuations. This leads to a pronounced apparent increase of the rotational diffusion coefficient. Above the transition temperature the shell collapses and provides a rather tight envelope of the core. In this state the dynamics of the shell is frozen and the core-shell particles behave like hard spheres. A simple physical model is presented to capture and explain the essentials of the coupling of rotational motion and shape fluctuations.Comment: 9 pages, 7 figure

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Thermally-Sensitive Particle–Protein Interaction

    No full text

    Characterization of cross-linked poly( N -isopropylmethacrylamide) microgel latexes

    No full text
    International audienc

    Characterization of cross-linked poly( N -isopropylmethacrylamide) microgel latexes

    No full text

    Cationic amino-containing N -isopropyl- acrylamide-styrene copolymer particles: 2-surface and colloidal characteristics

    No full text
    International audienc
    • …
    corecore