216 research outputs found

    Probabilistic quantum multimeters

    Full text link
    We propose quantum devices that can realize probabilistically different projective measurements on a qubit. The desired measurement basis is selected by the quantum state of a program register. First we analyze the phase-covariant multimeters for a large class of program states, then the universal multimeters for a special choice of program. In both cases we start with deterministic but erroneous devices and then proceed to devices that never make a mistake but from time to time they give an inconclusive result. These multimeters are optimized (for a given type of a program) with respect to the minimum probability of inconclusive result. This concept is further generalized to the multimeters that minimize the error rate for a given probability of an inconclusive result (or vice versa). Finally, we propose a generalization for qudits.Comment: 12 pages, 3 figure

    Several experimental realizations of symmetric phase-covariant quantum cloner of single-photon qubits

    Full text link
    We compare several optical implementations of phase-covariant cloning machines. The experiments are based on copying of the polarization state of a single photon in bulk optics by special unbalanced beam splitter or by balanced beam splitter accompanied by a state filtering. Also the all-fiber based setup is discussed, where the information is encoded into spatial modes, i.e., the photon can propagate through two optical fibers. Each of the four implementations possesses some advantages and disadvantages that are discussed.Comment: 8 pages, 11 figure

    Security Proof for Quantum Key Distribution Using Qudit Systems

    Full text link
    We provide security bounds against coherent attacks for two families of quantum key distribution protocols that use dd-dimensional quantum systems. In the asymptotic regime, both the secret key rate for fixed noise and the robustness to noise increase with dd. The finite-key corrections are found to be almost insensitive to d20d\lesssim 20.Comment: 5 pages, 1 figure, version 3 corrects equations (9) and (11), and slightly modifies the figure to reflect the change to equation (11

    Passive sources for the Bennett-Brassard 1984 quantum key distribution protocol with practical signals

    Full text link
    Most experimental realizations of quantum key distribution are based on the Bennett-Brassard 1984 (so-called BB84) protocol. In a typical optical implementation of this scheme, the sender uses an active source to produce the required BB84 signal states. While active state preparation of BB84 signals is a simple and elegant solution in principle, in practice passive state preparation might be desirable in some scenarios, for instance, in those experimental setups operating at high transmission rates. Passive schemes might also be more robust against side-channel attacks than active sources. Typical passive devices involve parametric down-conversion. In this paper, we show that both coherent light and practical single photon sources are also suitable for passive generation of BB84 signal states. Our method does not require any external-driven element, but only linear optical components and photodetectors. In the case of coherent light, the resulting key rate is similar to the one delivered by an active source. When the sender uses practical single photon sources, however, the distance covered by a passive transmitter might be longer than the one of an active configuration.Comment: 14 pages, 11 figure

    Experimental asymmetric phase-covariant quantum cloning of polarization qubits

    Full text link
    We report on two optical realizations of the 121 \to 2 asymmetric phase-covariant cloning machines for polarization states of single photons. The experimental setups combine two-photon interference and tunable polarization filtering that enables us to control the asymmetry of the cloners. The first scheme involves a special unbalanced bulk beam splitter exhibiting different splitting ratios for vertical and horizontal polarizations, respectively. The second implemented scheme consists of a balanced fiber coupler where photon bunching occurs, followed by a free-space part with polarization filters. With this later approach we were able to demonstrate very high cloning fidelities which are above the universal cloning limit.Comment: 7 pages, 8 figure

    Unambiguous state discrimination in quantum cryptography with weak coherent states

    Full text link
    The use of linearly independent signal states in realistic implementations of quantum key distribution (QKD) enables an eavesdropper to perform unambiguous state discrimination. We explore quantitatively the limits for secure QKD imposed by this fact taking into account that the receiver can monitor to some extend the photon number statistics of the signals even with todays standard detection schemes. We compare our attack to the beamsplitting attack and show that security against beamsplitting attack does not necessarily imply security against the attack considered here.Comment: 10 pages, 6 figures, updated version with added discussion of beamsplitting attac

    Passive-scheme analysis for solving untrusted source problem in quantum key distribution

    Full text link
    As a practical method, the passive scheme is useful to monitor the photon statistics of an untrusted source in a "Plug & Play" quantum key distribution (QKD) system. In a passive scheme, three kinds of monitor mode can be adopted: average photon number (APN) monitor, photon number analyzer (PNA) and photon number distribution (PND) monitor. In this paper, the security analysis is rigorously given for APN monitor, while for PNA, the analysis including statistical fluctuation and random noise, is addressed with a confidence level. The results show that the PNA can achieve better performance than the APN monitor and can asymptotically approach the theoretical limit of the PND monitor. Also, the passive scheme with the PNA works efficiently when the signal-to-noise ratio (RSNR^{SN}) is not too low and so is highly applicable to solve the untrusted source problem in the QKD system.Comment: 8 pages, 6 figures, published versio

    On single-photon quantum key distribution in the presence of loss

    Get PDF
    We investigate two-way and one-way single-photon quantum key distribution (QKD) protocols in the presence of loss introduced by the quantum channel. Our analysis is based on a simple precondition for secure QKD in each case. In particular, the legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. We show that both criteria can be formulated as a convex optimisation problem known as a semidefinite program, which can be efficiently solved. Moreover, we prove that the solution to the dual optimisation corresponds to the evaluation of an optimal witness operator that belongs to the minimal verification set of them for the given two-way (or one-way) QKD protocol. A positive expectation value of this optimal witness operator states that no secret key can be distilled from the available measurements results. We apply such analysis to several well-known single-photon QKD protocols under losses.Comment: 14 pages, 6 figure

    Glass transition of an epoxy resin induced by temperature, pressure and chemical conversion: a configurational entropy rationale

    Full text link
    A comparative study is reported on the dynamics of a glass-forming epoxy resin when the glass transition is approached through different paths: cooling, compression, and polymerization. In particular, the influence of temperature, pressure and chemical conversion on the dynamics has been investigated by dielectric spectroscopy. Deep similarities are found in dynamic properties. A unified reading of our experimental results for the structural relaxation time is given in the framework of the Adam-Gibbs theory. The quantitative agreement with the experimental data is remarkable, joined with physical values of the fitting parameters. In particular, the fitting function of the isothermal tau(P) data gives a well reasonable prediction for the molar thermal expansion of the neat system, and the fitting function of the isobaric-isothermal tau(C) data under step- polymerization conforms to the prediction of diverging tau at complete conversion of the system.Comment: 16 pages, 8 figures, from the talk given at the 4th International Discussion Meeting on Relaxations in Complex Systems (IDMRCS), Hersonissos, Helaklion, Crete (Greece), 17-23 June 200

    Upper bounds for the secure key rate of decoy state quantum key distribution

    Full text link
    The use of decoy states in quantum key distribution (QKD) has provided a method for substantially increasing the secret key rate and distance that can be covered by QKD protocols with practical signals. The security analysis of these schemes, however, leaves open the possibility that the development of better proof techniques, or better classical post-processing methods, might further improve their performance in realistic scenarios. In this paper, we derive upper bounds on the secure key rate for decoy state QKD. These bounds are based basically only on the classical correlations established by the legitimate users during the quantum communication phase of the protocol. The only assumption about the possible post-processing methods is that double click events are randomly assigned to single click events. Further we consider only secure key rates based on the uncalibrated device scenario which assigns imperfections such as detection inefficiency to the eavesdropper. Our analysis relies on two preconditions for secure two-way and one-way QKD: The legitimate users need to prove that there exists no separable state (in the case of two-way QKD), or that there exists no quantum state having a symmetric extension (one-way QKD), that is compatible with the available measurements results. Both criteria have been previously applied to evaluate single-photon implementations of QKD. Here we use them to investigate a realistic source of weak coherent pulses. The resulting upper bounds can be formulated as a convex optimization problem known as a semidefinite program which can be efficiently solved. For the standard four-state QKD protocol, they are quite close to known lower bounds, thus showing that there are clear limits to the further improvement of classical post-processing techniques in decoy state QKD.Comment: 10 pages, 3 figure
    corecore