15,349 research outputs found

    Quasivelocities and Optimal Control for Underactuated Mechanical Systems

    Full text link
    This paper is concerned with the application of the theory of quasivelocities for optimal control for underactuated mechanical systems. Using this theory, we convert the original problem in a variational second-order lagrangian system subjected to constraints. The equations of motion are geometrically derived using an adaptation of the classical Skinner and Rusk formalism.Comment: 8 page

    Towards a Hamilton-Jacobi Theory for Nonholonomic Mechanical Systems

    Get PDF
    In this paper we obtain a Hamilton-Jacobi theory for nonholonomic mechanical systems. The results are applied to a large class of nonholonomic mechanical systems, the so-called \v{C}aplygin systems.Comment: 13 pages, added references, fixed typos, comparison with previous approaches and some explanations added. To appear in J. Phys.

    Singular lagrangian systems and variational constrained mechanics on Lie algebroids

    Get PDF
    The purpose of this paper is describe Lagrangian Mechanics for constrained systems on Lie algebroids, a natural framework which covers a wide range of situations (systems on Lie groups, quotients by the action of a Lie group, standard tangent bundles...). In particular, we are interested in two cases: singular Lagrangian systems and vakonomic mechanics (variational constrained mechanics). Several examples illustrate the interest of these developments.Comment: 42 pages, Section with examples improve

    Quantum corrections to the geodesic equation

    Get PDF
    In this talk we will argue that, when gravitons are taken into account, the solution to the semiclassical Einstein equations (SEE) is not physical. The reason is simple: any classical device used to measure the spacetime geometry will also feel the graviton fluctuations. As the coupling between the classical device and the metric is non linear, the device will not measure the `background geometry' (i.e. the geometry that solves the SEE). As a particular example we will show that a classical particle does not follow a geodesic of the background metric. Instead its motion is determined by a quantum corrected geodesic equation that takes into account its coupling to the gravitons. This analysis will also lead us to find a solution to the so-called gauge fixing problem: the quantum corrected geodesic equation is explicitly independent of any gauge fixing parameter.Comment: Revtex file, 6 pages, no figures. Talk presented at the meeting "Trends in Theoretical Physics II", Buenos Aires, Argentina, December 199

    Relevance of nonadiabatic effects in TiOCl

    Full text link
    We analyze the effect of the phonon dynamics on a recently proposed model for the uniform-incommensurate transition seen in TiOX compounds. The study is based on a recently developed formalism for nonadiabatic spin-Peierls systems based on bosonization and a mean field RPA approximation for the interchain coupling. To reproduce the measured low temperature spin gap, a spin-phonon coupling quite bigger than the one predicted from an adiabatic approach is required. This high value is compatible with the renormalization of the phonons in the high temperature phase seen in inelastic x-ray experiments. Our theory accounts for the temperature of the incommensurate transition and the value of the incommensurate wave vector at the transition point.Comment: 4 pages, 2 figure

    Variational integrators and time-dependent lagrangian systems

    Get PDF
    This paper presents a method to construct variational integrators for time-dependent lagrangian systems. The resulting algorithms are symplectic, preserve the momentum map associated with a Lie group of symmetries and also describe the energy variation.Comment: 8 page

    Reduced classical field theories. k-cosymplectic formalism on Lie algebroids

    Full text link
    In this paper we introduce a geometric description of Lagrangian and Hamiltonian classical field theories on Lie algebroids in the framework of kk-cosymplectic geometry. We discuss the relation between Lagrangian and Hamiltonian descriptions through a convenient notion of Legendre transformation. The theory is a natural generalization of the standard one; in addition, other interesting examples are studied, mainly on reduction of classical field theories.Comment: 26 page
    • …
    corecore