733 research outputs found
Searching for galactic axions through magnetized media: QUAX status report
The current status of the QUAX R\&D program is presented. QUAX is a
feasibility study for a detection of axion as dark matter based on the coupling
to the electrons. The relevant signal is a magnetization change of a magnetic
material placed inside a resonant microwave cavity and polarized with a static
magnetic field.Comment: Contributed to the 13th Patras Workshop on Axions, WIMPs and WISPs,
Thessaloniki, May 15 to 19, 201
Axion search with a quantum-limited ferromagnetic haloscope
A ferromagnetic axion haloscope searches for Dark Matter in the form of
axions by exploiting their interaction with electronic spins. It is composed of
an axion-to-electromagnetic field transducer coupled to a sensitive rf
detector. The former is a photon-magnon hybrid system, and the latter is based
on a quantum-limited Josephson parametric amplifier. The hybrid system consists
of ten 2.1 mm diameter YIG spheres coupled to a single microwave cavity mode by
means of a static magnetic field. Our setup is the most sensitive rf
spin-magnetometer ever realized. The minimum detectable field is
T with 9 h integration time, corresponding to a limit on
the axion-electron coupling constant at 95% CL.
The scientific run of our haloscope resulted in the best limit on DM-axions to
electron coupling constant in a frequency span of about 120 MHz, corresponding
to the axion mass range -eV. This is also the first apparatus
to perform an axion mass scanning by changing the static magnetic field.Comment: 4 pages, 4 figure
Particle acoustic detection in gravitational wave aluminum resonant antennas
The results on cosmic rays detected by the gravitational antenna NAUTILUS
have motivated an experiment (RAP) based on a suspended cylindrical bar, which
is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy
electron beam. Mechanical vibrations originate from the local thermal expansion
caused by warming up due to the energy lost by particles crossing the material.
The aim of the experiment is to measure the amplitude of the fundamental
longitudinal vibration at different temperatures. We report on the results
obtained down to a temperature of about 4 K, which agree at the level of about
10% with the predictions of the model describing the underlying physical
process.Comment: RAP experiment, 16 pages, 7 figure
Study of coupling loss on bi-columnar BSCCO/Ag tapes by a.c. susceptibility measurements
Coupling losses were studied in composite tapes containing superconducting
material in the form of two separate stacks of densely packed filaments
embedded in a metallic matrix of Ag or Ag alloy. This kind of sample geometry
is quite favorable for studying the coupling currents and in particular the
role of superconducting bridges between filaments. By using a.c. susceptibility
technique, the electromagnetic losses as function of a.c. magnetic field
amplitude and frequency were measured at the temperature T = 77 K for two tapes
with different matrix composition. The length of samples was varied by
subsequent cutting in order to investigate its influence on the dynamics of
magnetic flux penetration. The geometrical factor which takes into
account the demagnetizing effects was established from a.c. susceptibility data
at low amplitudes. Losses vs frequency dependencies have been found to agree
nicely with the theoretical model developed for round multifilamentary wires.
Applying this model, the effective resistivity of the matrix was determined for
each tape, by using only measured quantities. For the tape with pure silver
matrix its value was found to be larger than what predicted by the theory for
given metal resistivity and filamentary architecture. On the contrary, in the
sample with a Ag/Mg alloy matrix, an effective resistivity much lower than
expected was determined. We explain these discrepancies by taking into account
the properties of the electrical contact of the interface between the
superconducting filaments and the normal matrix. In the case of soft matrix of
pure Ag, this is of poor quality, while the properties of alloy matrix seem to
provoke an extensive creation of intergrowths which can be actually observed in
this kind of samples.Comment: 20 pages 11 figure, submitted to Superconductor Science and
Technolog
The KLASH Proposal
We propose a search of galactic axions with mass about 0.2 µeV using a large volume resonant cavity, about 50 m3, cooled down to 4 K and immersed in a moderate axial magnetic field of about 0.6 T generated inside the superconducting magnet of the KLOE experiment [1] located at the National Laboratory of Frascati of INFN. This experiment, called KLASH (KLoe magnet for Axion SearcH) in the following, has a potential sensitivity on the axion-to-photon coupling, gaγγ, of about 6 × 10−17 GeV−1, reaching the region predicted by KSVZ [2] and DFSZ [3] models of QCD axions
Serum IL-17 after one course of sublingual immunotherapy in allergic rhinitis to birch
Recently, it has been reported that IL-17 may be involved in allergic reaction. Sublingual immunotherapy (SLIT) is the unique curative treatment for allergic rhinitis. This study aims at investigating whether one course of birch SLIT could affect serum IL-17 levels. The findings provided show that some IL-17 producer patients had a reduction of serum IL-17 levels after one SLIT course. Therefore, this preliminary study shows that a single pre-seasonal SLIT course may induce a significant decreasing trend in serum IL-17 levels; further study should be carried out to define the role exerted by IL-17 in allergic rhinitis
- …
