121 research outputs found
Recommended from our members
Iron redox pathway revealed in ferritin via electron transfer analysis.
Ferritin protein is involved in biological tissues in the storage and management of iron - an essential micro-nutrient in the majority of living systems. While there are extensive studies on iron-loaded ferritin, its functionality in iron delivery is not completely clear. Here, for the first time, differential pulse voltammetry (DPV) has been successfully adapted to address the challenge of resolving a cascade of fast and co-occurring redox steps in enzymatic systems such as ferritin. Using DPV, comparative analysis of ferritins from two evolutionary-distant organisms has allowed us to propose a stepwise resolution for the complex mix of concurrent redox steps that is inherent to ferritins and to fine-tune the structure-function relationship of each redox step. Indeed, the cyclic conversion between Fe3+ and Fe2+ as well as the different oxidative steps of the various ferroxidase centers already known in ferritins were successfully discriminated, bringing new evidence that both the 3-fold and 4-fold channels can be functional in ferritin
Myzostomes from Papua New Guinea, with related Indo-West Pacific distribution records and description of five new species
Eighteen species of myzostomes were found in association with crinoids collected in Papua New Guinea. Thirteen of the former are described by means of in vivo, light microscopical, and SEM-based observations. Five are new to science: Myzostoma cuniculus, M. laingense, M. nigromaculatum, and M. longitergum are ectocommensals; Contramyzostoma sphaera is a parasite living in a soft cyst induced upon its host. The eight previously described species, six of which are redescribed in detail, include Myzostoma ambiguum Graff, M. capitocutis Eeckhaut, VandenSpiegel and Grygier, M. fissum Graff, M. mortenseni (Jägersten), M. polycyclus Atkins, and M. stochoeides Atkins, as well as Hypomyzostoma crosslandi (Boulenger) and Notopharyngoides aruensis (Remscheid). Most are ectocommensals but the last is an intradigestive symbiont. New Indo-West Pacific distribution and host records for all eight are listed, based on surveys of museum collections, and their entire range are mapped. Hypomyzostoma Perrier, 1897 (type species Myzostoma folium Graff) is resurrected for one of the species-groups previously recognized within Myzostoma, and a lectotype is selected for H. crosslandi. Specimens from Singapore previously identified as M. elegans Graff are reassigned to M. capitocutis
Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae.
While shifts from coral to seaweed dominance have become increasingly common on coral reefs and factors triggering these shifts successively identified, the primary mechanisms involved in coral-algae interactions remain unclear. Amongst various potential mechanisms, algal exudates can mediate increases in microbial activity, leading to localized hypoxic conditions which may cause coral mortality in the direct vicinity. Most of the processes likely causing such algal exudate induced coral mortality have been quantified (e.g., labile organic matter release, increased microbial metabolism, decreased dissolved oxygen availability), yet little is known about how reduced dissolved oxygen concentrations affect competitive dynamics between seaweeds and corals. The goals of this study were to investigate the effects of different levels of oxygen including hypoxic conditions on a common hermatypic coral Acropora yongei and the common green alga Bryopsis pennata. Specifically, we examined how photosynthetic oxygen production, dark and daylight adapted quantum yield, intensity and anatomical distribution of the coral innate fluorescence, and visual estimates of health varied with differing background oxygen conditions. Our results showed that the algae were significantly more tolerant to extremely low oxygen concentrations (2-4 mg L(-1)) than corals. Furthermore corals could tolerate reduced oxygen concentrations, but only until a given threshold determined by a combination of exposure time and concentration. Exceeding this threshold led to rapid loss of coral tissue and mortality. This study concludes that hypoxia may indeed play a significant role, or in some cases may even be the main cause, for coral tissue loss during coral-algae interaction processes
<i>Discoplana malagasensis</i> sp. nov., a new turbellarian (Platyhelminthes: Polycladida: Leptoplanidae) symbiotic in an ophiuroid (Echinodermata), with a cladistic analysis of the <i>Discoplana/ Euplana</i> species
A new species of polyclad flatworm from Papua New Guinea is described. It is found symbiotic in the ophiuroid Ophiothrix purpurea von Martens, 1867 (Echinodermata: Ophiuroidea). Apparently it belongs to the taxon Discoplana Bock, 1913 and can be distinguished from the six previously described Discoplana species by its very short ejaculatory duct and a penial papilla covered with a penial sheath, but without any true sclerotised structures such as a stylet or spines. The cladistic analysis of the Discoplana/Euplana species, based on morphological features and including two outgroups, reveals that all species of Discoplana, except D. pacificola, form a monophyletic taxon, that is not a synonym of Euplana Girard, 1893. Therefore the name Discoplana is conserved and the new species will be described as Discoplana malagasensis sp. nov. A key for the Discoplana/Euplana group is provided. In this key the biogeographical distribution and possible synonyms are given
Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica.
The anticipated effects of CO2-induced ocean acidification on marine calcifiers are generally negative, and include dissolution of calcified elements and reduced calcification rates. Such negative effects are not typical of crustaceans for which comparatively little ocean acidification research has been conducted. Crustaceans, however, depend on their calcified exoskeleton for many critical functions. Here, we conducted a short-term study on a common caridean shrimp, Lysmata californica, to determine the effect of CO2-driven reduction in seawater pH on exoskeleton growth, structure, and mineralization and animal cryptic coloration. Shrimp exposed to ambient (7.99 ± 0.04) and reduced pH (7.53 ± 0.06) for 21 days showed no differences in exoskeleton growth (percent increase in carapace length), but the calcium weight percent of their cuticle increased significantly in reduced pH conditions, resulting in a greater Ca:Mg ratio. Cuticle thickness did not change, indicating an increase in the mineral to matrix ratio, which may have mechanical consequences for exoskeleton function. Furthermore, there was a 5-fold decrease in animal transparency, but no change in overall shrimp coloration (red). These results suggest that even short-term exposure to CO2-induced pH reduction can significantly affect exoskeleton mineralization and shrimp biophotonics, with potential impacts on crypsis, physical defense, and predator avoidance
Amphioxus encodes the largest known family of green fluorescent proteins, which have diversified into distinct functional classes
<p>Abstract</p> <p>Background</p> <p>Green fluorescent protein (GFP) has been found in a wide range of Cnidaria, a basal group of metazoans in which it is associated with pigmentation, fluorescence, and light absorbance. A GFP has been recently discovered in the pigmentless chordate <it>Branchiostoma floridae </it>(amphioxus) that shows intense fluorescence mainly in the head region.</p> <p>Results</p> <p>The amphioxus genome encodes 16 closely-related GFP-like proteins, all of which appear to be under purifying selection. We divide them into 6 clades based on protein sequence identity and show that representatives of each clade have significant differences in fluorescence intensity, extinction coefficients, and absorption profiles. Furthermore, GFPs from two clades exhibit antioxidant capacity. We therefore propose that amphioxus GFPs have diversified their functions into fluorescence, redox, and perhaps just light absorption in relation to pigmentation and/or photoprotection.</p> <p>Conclusion</p> <p>The rapid radiation of amphioxus GFP into clades with distinct functions and spectral properties reveals functional plasticity of the GFP core. The high sequence similarities between different clades provide a model system to map sequence variation to functional changes, to better understand and engineer GFP.</p
Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity
Slight shifts in arrangement within biological photonic nanostructures can produce large color differences, and sexual selection often leads to high color diversity in clades with structural colors. We use phylogenetic reconstruction, electron microscopy, spectrophotometry, and opticalmodeling to showan opposing pattern of nanostructural diversification accompanied by unusual conservation of blue color in tarantulas (Araneae: Theraphosidae). In contrast to other clades, blue coloration in phylogenetically distant tarantulas peaks within a narrow 20-nm region around 450 nm. Both quasi-ordered and multilayer nanostructures found in different tarantulas produce this blue color. Thus, even within monophyletic lineages, tarantulas have evolved strikingly similar blue coloration through divergent mechanisms. The poor color perception and lack of conspicuous display during courtship of tarantulas argue that these colors are not sexually selected. Therefore, our data contrast with sexual selection that typically produces a diverse array of colors with a single structuralmechanismby showing that natural selection on structural color in tarantulas resulted in convergence on similar color through diverse structural mechanisms
- …