614 research outputs found
Non-equilibrium structural phase transitions of the vortex lattice in MgB2
We have studied non-equilibrium phase transitions in the vortex lattice in
superconducting MgB2, where metastable states are observed in connection with
an intrinsically continuous rotation transition. Using small-angle neutron
scattering and a stop-motion technique, we investigated the manner in which the
metastable vortex lattice returns to the equilibrium state under the influence
of an ac magnetic field. This shows a qualitative difference between the
supercooled case which undergoes a discontinuous transition, and the
superheated case where the transition to the equilibrium state is continuous.
In both cases the transition may be described by an an activated process, with
an activation barrier that increases as the metastable state is suppressed, as
previously reported for the supercooled vortex lattice [E. R. Louden et al.,
Phys. Rev. B 99, 060502(R) (2019)]. Separate preparations of superheated
metastable vortex lattices with different domain populations showed an
identical transition towards the equilibrium state. This provides further
evidence that the vortex lattice metastability, and the kinetics associated
with the transition to the equilibrium state, is governed by nucleation and
growth of domains and the associated domain boundaries.Comment: 27 pages, 10 figures. arXiv admin note: text overlap with
arXiv:1812.0597
Re-evaluating the Cu K pre-edge XAS transition in complexes with covalent metal–ligand interactions
Three [Me2NN]Cu(h2
-L2) complexes (Me2NN ¼ HC[C(Me)NAr]2; L2 ¼ PhNO (2), ArF
2N2 (3), PhCH]CH2 (4);
Ar ¼ 2,6-Me2-C6H3; ArF ¼ 3,5-(CF3)2-C6H3) have been studied by Cu K-edge X-ray absorption
spectroscopy, as well as single- and multi-reference computational methods (DFT, TD-DFT, CASSCF,
MRCI, and OVB). The study was extended to a range of both known and theoretical compounds bearing
2p-element donors as a means of deriving a consistent view of how the pre-edge transition energy
responds in systems with significant ground state covalency. The ground state electronic structures of
many of the compounds under investigation were found to be strongly influenced by correlation effects,
resulting in ground state descriptions with majority contributions from a configuration comprised of a
Cu(II) metal center anti-ferromagentically coupled to radical anion O2, PhNO, and ArF
2N2 ligands. In
contrast, the styrene complex 4, which displays a Cu K pre-edge transition despite its formal d10 electron
configuration, exhibits what can best be described as a Cu(I):(styrene)0 ground state with strong pbackbonding.
The Cu K pre-edge features for these complexes increase in energy from 1 to 4, a trend
that was tracked to the percent Cu(II)-character in the ground state. The unexpected shift to higher preedge
transition energies with decreasing charge on copper (QCu) contributed to an assignment of the
pre-edge features for these species as arising from metal-to-ligand charge transfer instead of the
traditional Cu1s / Cu3d designation
Magnetic field control of cycloidal domains and electric polarization in multiferroic BiFeO
The magnetic field induced rearrangement of the cycloidal spin structure in
ferroelectric mono-domain single crystals of the room-temperature multiferroic
BiFeO is studied using small-angle neutron scattering (SANS). The cycloid
propagation vectors are observed to rotate when magnetic fields applied
perpendicular to the rhombohedral (polar) axis exceed a pinning threshold value
of 5\,T. In light of these experimental results, a phenomenological model
is proposed that captures the rearrangement of the cycloidal domains, and we
revisit the microscopic origin of the magnetoelectric effect. A new coupling
between the magnetic anisotropy and the polarization is proposed that explains
the recently discovered magnetoelectric polarization to the rhombohedral axis
Structural Transition Kinetics and Activated Behavior in the Superconducting Vortex Lattice
Using small-angle neutron scattering, we investigated the behavior of a
metastable vortex lattice state in MgB2 as it is driven towards equilibrium by
an AC magnetic field. This shows an activated behavior, where the AC field
amplitude and cycle count are equivalent to, respectively, an effective
"temperature" and "time". The activation barrier increases as the metastable
state is suppressed, corresponding to an aging of the vortex lattice.
Furthermore, we find a cross-over from a partial to a complete suppression of
metastable domains depending on the AC field amplitude, which may empirically
be described by a single free parameter. This represents a novel kind of
collective vortex behavior, most likely governed by the nucleation and growth
of equilibrium vortex lattice domains.Comment: 5 pages plus 3 pages of supplemental materia
The dehydration, rehydration and tectonic setting of greenstone belts in a portion of the northern Kaapvaal Craton, South Africa
High-grade gneiss terranes and low-grade granite-greenstone terranes are well known in several Archaean domains. The geological relationship between these different crustal regions, however, is still controversial. One school of thought favors fundamental genetic differences between high-grade and low-grade terranes while others argue for a depth-controlled crustal evolution. The detailed examination of well-exposed Archaean terranes at different metamorphic grades, therefore, is not only an important source of information about the crustal levels exposed, but also is critical to the understanding of the possible tectonic and metamorphic evolution of greenstone belts with time. Three South African greenstone belts are compared
Structure–Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations
The determination of the diiron core intermediate structures involved in the catalytic cycle of soluble methane monooxygenase (sMMO), the enzyme that selectively catalyzes the conversion of methane to methanol, has been a subject of intense interest within the bioinorganic scientific community. Particularly, the specific geometry and electronic structure of the intermediate that precedes methane binding, known as intermediate Q (or MMOHQ), has been debated for over 30 years. Some reported studies support a bis-μ-oxo-bridged Fe(IV)2O2 closed-core conformation Fe(IV)2O2 core, whereas others favor an open-core geometry, with a longer Fe–Fe distance. The lack of consensus calls for a thorough re-examination and reinterpretation of the spectroscopic data available on the MMOHQ intermediate. Herein, we report extensive simulations based on a hybrid quantum mechanics/molecular mechanics approach (QM/MM) approach that takes into account the complete enzyme to explore possible conformations for intermediates MMOHox and MMOHQ of the sMMOH catalytic cycle. High-level quantum chemical approaches are used to correlate specific structural motifs with geometric parameters for comparison with crystallographic and EXAFS data, as well as with spectroscopic data from Mössbauer spectroscopy, Fe K-edge high-energy resolution X-ray absorption spectroscopy (HERFD XAS), and resonance Raman 16O–18O difference spectroscopy. The results provide strong support for an open-core-type configuration in MMOHQ, with the most likely topology involving mono-oxo-bridged Fe ions and alternate terminal Fe-oxo and Fe-hydroxo groups that interact via intramolecular hydrogen bonding. The implications of an open-core intermediate Q on the reaction mechanism of sMMO are discussed
Topological energy barrier for skyrmion lattice formation in MnSi
We report the direct measurement of the topological skyrmion energy barrier
through a hysteresis of the skyrmion lattice in the chiral magnet MnSi.
Measurements were made using small-angle neutron scattering with a custom-built
resistive coil to allow for high-precision minor hysteresis loops. The
experimental data was analyzed using an adapted Preisach model to quantify the
energy barrier for skyrmion formation and corroborated by the minimum-energy
path analysis based on atomistic spin simulations. We reveal that the skyrmion
lattice in MnSi forms from the conical phase progressively in small domains,
each of which consisting of hundreds of skyrmions, and with an activation
barrier of several eV.Comment: Final accepted versio
- …