185 research outputs found
Dynamical Properties of a Growing Surface on a Random Substrate
The dynamics of the discrete Gaussian model for the surface of a crystal
deposited on a disordered substrate is investigated by Monte Carlo simulations.
The mobility of the growing surface was studied as a function of a small
driving force and temperature . A continuous transition is found from
high-temperature phase characterized by linear response to a low-temperature
phase with nonlinear, temperature dependent response. In the simulated regime
of driving force the numerical results are in general agreement with recent
dynamic renormalization group predictions.Comment: 10 pages, latex, 3 figures, to appear in Phys. Rev. E (RC
Statistical mechanics of base stacking and pairing in DNA melting
We propose a statistical mechanics model for DNA melting in which base
stacking and pairing are explicitly introduced as distinct degrees of freedom.
Unlike previous approaches, this model describes thermal denaturation of DNA
secondary structure in the whole experimentally accessible temperature range.
Base pairing is described through a zipper model, base stacking through an
Ising model. We present experimental data on the unstacking transition,
obtained exploiting the observation that at moderately low pH this transition
is moved down to experimentally accessible temperatures. These measurements
confirm that the Ising model approach is indeed a good description of base
stacking. On the other hand, comparison with the experiments points to the
limitations of the simple zipper model description of base pairing.Comment: 13 pages with figure
Effects of mechanical strain on thermal denaturation of DNA
As sections of a strand duplexed DNA denature when exposed to high
temperature, the excess linking number is taken up by the undenatured portions
of the molecule. The mechanical energy that arises because of the overwinding
of the undenatured sections can, in principle, alter the nature of the thermal
denaturation process. Assuming that the strains associated with this
overwinding are not relieved, we find that a simple model of strain-altered
melting leads to a suppression of the melting transition when the unaltered
transition is continuous. When the melting transition is first order in the
absence of strain associated with overwinding, the modification is to a third
order phase transition.Comment: 4 pages, 5 figures, RevTe
New evidence for super-roughening in crystalline surfaces with disordered substrate
We study the behavior of the Binder cumulant related to long distance
correlation functions of the discrete Gaussian model of disordered substrate
crystalline surfaces. We exhibit numerical evidence that the non-Gaussian
behavior in the low- region persists on large length scales, in agreement
with the broken phase being super-rough.Comment: 10 pages and 4 figures, available at
http://chimera.roma1.infn.it/index_papers_complex.html . We have extended the
RG discussion and minor changes in the tex
Phase Diagram for Splay Glass Superconductivity
Localization of flux lines to splayed columnar pins is studied. A sine-Gordon
type renormalization group study reveals the existence of a Splay glass phase
and yields an analytic form for the transition temperature into the glass
phase. As an independent test, the characteristics are determined via a
Molecular Dynamics code. The glass transition temperature supports the RG
results convincingly. The full phase diagram of the model is constructed.Comment: 14 pages, uuencoded compressed tar file with 3 postscript figure
Crystal surfaces with correlated disorder: Phase transitions between roughening and superroughening
A theory for surface transitions in the presence of a disordered pinning
potential is presented. Arbitrary disorder correlations are treated in the
framework of a dynamical functional renormalization group. The roughening
transition, where surface roughness and mobility behave discontinuously, is
shown to turn smoothly into the continuous superroughening transition, when the
range of disorder correlations is decreased. Implications for random-field
-models and vortex glasses are discussed.Comment: 13 pages with 2 figures, latex+revte
Estimating the Effect of Liver and Pancreas Volume and Fat Content on Risk of Diabetes: A Mendelian Randomization Study
Fat content and volume of liver and pancreas are associated with risk of diabetes in observational studies; whether these associations are causal is unknown. We conducted a Mendelian randomization (MR) study to examine causality of such associations. We used genetic variants associated (P < 5 × 10-8) with the exposures (liver and pancreas volume and fat content) using MRI scans of UK Biobank participants (n = 32,859). We obtained summary-level data for risk of type 1 (9,358 cases) and type 2 (55,005 cases) diabetes from the largest available genome-wide association studies. We performed inverse-variance weighted MR as main analysis and several sensitivity analyses to assess pleiotropy and to exclude variants with potential pleiotropic effects. Observationally, liver fat and volume were associated with type 2 diabetes (odds ratio per 1 SD higher exposure 2.16 [2.02, 2.31] and 2.11 [1.96, 2.27], respectively). Pancreatic fat was associated with type 2 diabetes (1.42 [1.34, 1.51]) but not type 1 diabetes, and pancreas volume was negatively associated with type 1 diabetes (0.42 [0.36, 0.48]) and type 2 diabetes (0.73 [0.68, 0.78]). MR analysis provided evidence only for a causal role of liver fat and pancreas volume in risk of type 2 diabetes (1.27 [1.08, 1.49] or 27% increased risk and 0.76 [0.62, 0.94] or 24% decreased risk per 1SD, respectively) and no causal associations with type 1 diabetes. Our findings assist in understanding the causal role of ectopic fat in the liver and pancreas and of organ volume in the pathophysiology of type 1 and 2 diabetes. [Abstract copyright: © 2022 by the American Diabetes Association.
- …