128 research outputs found

    Infrared anomalous Hall effect in SrRuO3_3: Evidence for crossover to intrinsic behavior

    Full text link
    The origin of the Hall effect in many itinerant ferromagnets is still not resolved, with an anomalous contribution from the sample magnetization that can exhibit extrinsic or intrinsic behavior. We report the first mid-infared (MIR) measurements of the complex Hall (θH\theta_H), Faraday (θF\theta_F), and Kerr (θK\theta_K) angles, as well as the Hall conductivity (σxy\sigma_{xy}) in a SrRuO3_3 film in the 115-1400 meV energy range. The magnetic field, temperature, and frequency dependence of the Hall effect is explored. The MIR magneto-optical response shows very strong frequency dependence, including sign changes. Below 200 meV, the MIR θH(T)\theta_H (T) changes sign between 120 and 150 K, as is observed in dc Hall measurements. Above 200 meV, the temperature dependence of θH\theta_H is similar to that of the dc magnetization and the measurements are in good agreement with predictions from a band calculation for the intrinsic anomalous Hall effect (AHE). The temperature and frequency dependence of the measured Hall effect suggests that whereas the behavior above 200 meV is consistent with an intrinsic AHE, the extrinsic AHE plays an important role in the lower energy response.Comment: The resolution of figures is improve

    Electronic structure of ferromagnetic semiconductor Ga1-xMnxAs probed by sub-gap magneto-optical spectroscopy

    Get PDF
    We employ Faraday and Kerr effect spectroscopy in the infrared range to investigate the electronic structure of Ga1-xMnxAs near the Fermi energy. The band structure of this archetypical dilute-moment ferromagnetic semiconductor has been a matter of controversy, fueled partly by previous measurements of the unpolarized infrared absorption and their phenomenological impurity-band interpretation. The infrared magneto-optical effects we study arise directly from the spin-splitting of the carrier bands and their chiral asymmetry due to spin-orbit coupling. Unlike the unpolarized absorption, they are intimately related to ferromagnetism and their interpretation is much more microscopically constrained in terms of the orbital character of the relevant band states. We show that the conventional theory of the disordered valence band with dominant As p-orbital character and coupled by kinetic-exchange to Mn local moments accounts semi-quantitatively for the overall characteristics of the measured infrared magneto-optical spectra.Comment: 4 pages 3 figure

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described

    Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction

    Full text link
    We measure the Hall conductivity of a two-dimensional electron gas formed at a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron resonance frequency by employing a highly sensitive Faraday rotation method coupled with electrical gating of the sample to change the electron density. We observe clear plateau-and step-like features in the Faraday rotation angle vs. electron density and magnetic field (Landau-level filling factor), which are the high frequency manifestation of quantum Hall plateaus - a signature of topologically protected edge states. The results are compared to a recent dynamical scaling theory.Comment: 18 pages, 3 figure

    Spin-dynamic field coupling in strongly THz driven semiconductors : local inversion symmetry breaking

    Full text link
    We study theoretically the optics in undoped direct gap semiconductors which are strongly driven in the THz regime. We calculate the optical sideband generation due to nonlinear mixing of the THz field and the near infrared probe. Starting with an inversion symmetric microscopic Hamiltonian we include the THz field nonperturbatively using non-equilibrium Green function techniques. We find that a self induced relativistic spin-THz field coupling locally breaks the inversion symmetry, resulting in the formation of odd sidebands which otherwise are absent.Comment: 8 pages, 6 figure

    Terahertz Magneto Optical Polarization Modulation Spectroscopy

    Full text link
    We report the development of new terahertz techniques for rapidly measuring the complex Faraday angle in systems with broken time-reversal symmetry using the cyclotron resonance of a GaAs two-dimensional electron gas in a magnetic field as a system for demonstration of performance. We have made polarization modulation, high sensitivity (< 1 mrad) narrow band rotation measurements with a CW optically pumped molecular gas laser, and by combining the distinct advantages of terahertz (THz) time domain spectroscopy and polarization modulation techniques, we have demonstrated rapid broadband rotation measurements to < 5 mrad precision.Comment: 25 pages including 7 figures, introduces use of rotating polarizer with THz TDS for Complex Faraday Angle determinatio

    Measuring anisotropic scattering in the cuprates

    Full text link
    A simple model of anisotropic scattering in a quasi two-dimensional metal is studied. Its simplicity allows an analytic calculation of transport properties using the Boltzmann equation and relaxation time approximation. We argue that the c-axis magnetoresistance provides the key test of this model of transport. We compare this model with experiments on overdoped Tl-2201 and find reasonable agreement using only weak scattering anisotropy. We argue that optimally doped Tl-2201 should show strong angular-dependent magnetoresistance within this model and would provide a robust way of determining the in-plane scattering anisotropy in the cuprates.Comment: 12 pages, 8 figures, typset in REVTeX 4. Version 2; added references and corrected typo
    • …
    corecore