5,473 research outputs found

    Non-linear Coulomb blockade microscopy of a correlated one-dimensional quantum dot

    Full text link
    We evaluate the chemical potential of a one-dimensional quantum dot, coupled to an atomic force microscope tip. The dot is described within the Luttinger liquid framework and the conductance peaks positions as a function of the tip location are calculated in the linear and non-linear transport regimes for an arbitrary number of particles. The differences between the chemical potential oscillations induced by Friedel and Wigner terms are carefully analyzed in the whole range of interaction strength. It is shown that Friedel oscillations, differently from the Wigner ones, are sensitive probes to detect excited spin states and collective spin density waves involved in the transport.Comment: 4 figure

    The Dark Matter Radial Profile in the Core of the Relaxed Cluster A2589

    Full text link
    We present an analysis of a Chandra--ACIS observation of the galaxy cluster A2589 to constrain the radial distribution of the total gravitating matter and the dark matter in the core of the cluster. A2589 is especially well-suited for this analysis because the hot gas in its core region (r < ~0.1 Rvir) is undisturbed by interactions with a central radio source. From the largest radius probed (r=0.07 Rvir) down to r ~0.02 Rvir dark matter dominates the gravitating mass. Over this region the radial profiles of the gravitating and dark matter are fitted well by the NFW and Hernquist profiles predicted by CDM. The density profiles are also described well by power laws, rho ~r^{-alpha}, where alpha=1.37 +/- 0.14 for the gravitating matter and alpha=1.35 +/- 0.21 for the dark matter. These values are consistent with profiles of CDM halos but are significantly larger than alpha ~0.5 found in LSB galaxies and expected from self-interacting dark matter models.Comment: 10 pages, 6 figures, To Appear in The Astrophysical Journal, March 20 issue, a few very minor changes to match copyedited versio

    The U-band Galaxy Luminosity Function of Nearby Clusters

    Full text link
    Despite the great potential of the U-band galaxy luminosity function (GLF) to constrain the history of star formation in clusters, to clarify the question of variations of the GLF across filter bands, to provide a baseline for comparisons to high-redshift studies of the cluster GLF, and to estimate the contribution of bound systems of galaxies to the extragalactic near-UV background, determinations have so far been hampered by the generally low efficiency of detectors in the U-band and by the difficulty of constructing both deep and wide surveys. In this paper, we present U-band GLFs of three nearby, rich clusters to a limit of M_U=-17.5 (M*_U+2). Our analysis is based on a combination of separate spectroscopic and R-band and U-band photometric surveys. For this purpose, we have developed a new maximum-likelihood algorithm for calculating the luminosity function that is particularly useful for reconstructing the galaxy distribution function in multi-dimensional spaces (e.g., the number of galaxies as a simultaneous function of luminosity in different filter bands, surface brightness, star formation rate, morphology, etc.), because it requires no prior assumptions as to the shape of the distribution function. The composite luminosity function can be described by a Schechter function with characteristic magnitude M*_U=-19.82+/-0.27 and faint end slope alpha_U=-1.09+/-0.18. The total U-band GLF is slightly steeper than the R-band GLF, indicating that cluster galaxies are bluer at fainter magnitudes. Quiescent galaxies dominate the cumulative U-band flux for M_U<-14. The contribution of galaxies in nearby clusters to the U-band extragalactic background is <1% Gyr^-1 for clusters of masses ~3*10^14 to 2*10^15 M_solar.Comment: 44 pages, 11 figures, accepted for publication in Ap

    Use of balloon catheter dilation vs. traditional endoscopic sinus surgery in management of light and severe chronic rhinosinusitis of the frontal sinus: a multicenter prospective randomized study

    Get PDF
    OBJECTIVE: Chronic rhinosinusitis (CRS) of the frontal sinus is a complex pathological condition and many surgical techniques were described to treat this area endoscopically, like traditional endoscopic sinus surgery (ESS) and balloon catheter dilation (BCD). PATIENTS AND METHODS: We designed a multicenter prospective randomized study to assess the validity and safety of BCD vs. ESS in symptomatological chronic rhinosinusitis of the frontal sinus enrolling a population of 102 adult patients (64 men and 38 women; overall 148 frontal sinuses studied) with non-polypoid CRS. For a better evaluation of the disease, in our study we decided to analyze both radiological (Lund-McKay CT scoring modified by Zinreich) and symptomatological results (SNOT-20 questionnaire). We divided the population affected in two groups, one with light/mild frontal CRS and the other with moderate/severe frontal CRS, basing on radiological findings at Lund-MacKay modified by Zinreich score. Every group was divided in two subgroups, in one we used BCD and in the other we used traditional ESS. RESULTS: The current literature does not support the suggestion that indications for BCD and ESS are identical, and additional research is needed to determine the role for BCD in specific patient populations. The results showed a not statistically significative difference between BCD and conventional ESS of the frontal sinus in patients with light/mild CRS and in patients with moderate/severe CRS at Lund-Mackay modified by Zinreich score. The same not statistically significative difference was observed comparing the results of SNOT-20 questionnaire in the group of light/mild frontal chronic rhinosinusitis. However, we noticed a statistically significant better outcome of SNOT-20 score in patients with moderate/severe chronic rhinosinusitis that underwent BCD of frontal sinus compared to ESS. CONCLUSIONS: BCD and ESS are two alternative weapons in the baggage of every endoscopic surgeon, even because they present similar outcomes, safeness and effectiveness both in light/mild and moderate/severe chronic rhinosinusitis of the frontal sinus. An interesting result of our study was the statistically significant better outcome of SNOT-20 score in patients that underwent BCD of frontal sinus for a moderate/severe CRS, compared to those that underwent a traditional ESS

    Galaxy Cluster Shapes and Systematic Errors in H0 Measured by the Sunyaev-Zel'dovich Effect

    Get PDF
    Imaging of the Sunyaev-Zel'dovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics can measure the cosmic distance scale to high redshift. Projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight introduces systematic errors in the Hubble constant, H0, because the true shape of the cluster is not known. I present a study of the systematic errors in the value of H0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal ``beta'' model clusters, caused by projection effects and observer orientation. I calculate estimates for H0 for each cluster based on their large and small apparent angular core radii and their arithmetic mean. I demonstrate that the estimates for H0 for a sample of 25 clusters have 99.7% confidence intervals for the mean estimated H0 analyzing the clusters using either their large or mean angular core radius are within 14% of the ``true'' (assumed) value of H0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters. This limit on the systematic error in H0 caused by cluster shape assumes that each sample beta model cluster has fixed shape; deviations from constant shape within the clusters may introduce additional uncertainty or bias into this result.Comment: Accepted for publication in the Astrophysical Journal, 24 March 1998; 4 pages, 2 figure

    Evidence of diffusive fractal aggregation of TiO2 nanoparticles by femtosecond laser ablation at ambient conditions

    Full text link
    The specific mechanisms which leads to the formation of fractal nanostructures by pulsed laser deposition remain elusive despite intense research efforts, motivated mainly by the technological interest in obtaining tailored nanostructures with simple and scalable production methods. Here we focus on fractal nanostructures of titanium dioxide, TiO2TiO_2, a strategic material for many applications, obtained by femtosecond laser ablation at ambient conditions. We model the fractal formation through extensive Monte Carlo simulations based on a set of minimal assumptions: irreversible sticking and size independent diffusion. Our model is able to reproduce the fractal dimensions and the area distributions of the nanostructures obtained in the experiments for different densities of the ablated material. The comparison of theory and experiment show that such fractal aggregates are formed after landing of the ablated material on the substrate surface by a diffusive mechanism. Finally we discuss the role of the thermal conductivity of the substrate and the laser fluence on the properties of the fractal nanostructures. Our results represent an advancement towards controlling the production of fractal nanostructures by pulsed laser deposition.Comment: 21 page

    Extracting Galaxy Cluster Gas Inhomogeneity from X-ray Surface Brightness: A Statistical Approach and Application to Abell 3667

    Full text link
    Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal distribution. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the density fluctuations and the X-ray surface brightness. We analyze \chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of two from their X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three dimensional inhomogeneity in galaxy clusters.Comment: 34 pages, 17 figures, accepted for publication in Ap

    Expectations For an Interferometric Sunyaev-Zel'dovich Effect Survey for Galaxy Clusters

    Get PDF
    Non-targeted surveys for galaxy clusters using the Sunyaev-Zel'dovich effect (SZE) will yield valuable information on both cosmology and evolution of the intra-cluster medium (ICM). The redshift distribution of detected clusters will constrain cosmology, while the properties of the discovered clusters will be important for studies of the ICM and galaxy formation. Estimating survey yields requires a detailed model for both cluster properties and the survey strategy. We address this by making mock observations of galaxy clusters in cosmological hydrodynamical simulations. The mock observatory consists of an interferometric array of ten 2.5 m diameter telescopes, operating at a central frequency of 30 GHz with a bandwidth of 8 GHz. We find that clusters with a mass above 2.5×1014h50−1M⊙2.5 \times 10^{14} h_{50}^{-1} M_\odot will be detected at any redshift, with the exact limit showing a very modest redshift dependence. Using a Press-Schechter prescription for evolving the number densities of clusters with redshift, we determine that such a survey should find hundreds of galaxy clusters per year, many at high redshifts and relatively low mass -- an important regime uniquely accessible to SZE surveys. Currently favored cosmological models predict roughly 25 clusters per square degree.Comment: revised to match published versio

    X-raying the Star Formation History of the Universe

    Get PDF
    The current models of early star and galaxy formation are based upon the hierarchical growth of dark matter halos, within which the baryons condense into stars after cooling down from a hot diffuse phase. The latter is replenished by infall of outer gas into the halo potential wells; this includes a fraction previously expelled and preheated, due to momentum and energy fed back by the SNe which follow the star formation. We identify such an implied hot phase with the medium known to radiate powerful X-rays in clusters and in groups of galaxies. We show that the amount of the hot component required by the current star formation models is enough to be observable out to redshifts z≈1.5z \approx 1.5 in forthcoming deep surveys from {\it Chandra} and {\it XMM}, especially in case the star formation rate is high at such and earlier zz. These X-ray emissions constitute a necessary counterpart, and will provide a much wanted probe of the SF process itself (in particular, of the SN feedback), to parallel and complement the currently debated data from optical and IR observations of the young stars.Comment: 13 pages, 2 figures, accepted for publicatin in ApJ
    • 

    corecore