14 research outputs found
Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice
During illness, major changes in thyroid hormone metabolism and regulation occur; these are collectively known as non-thyroidal illness and are characterized by decreased serum triiodothyronine (T(3)) and thyroxine (T(4)) without an increase in serum TSH. Whether alterations in the central part of the hypothalamus-pituitary-thyroid (HPT) axis precede changes in peripheral thyroid hormone metabolism instead of vice versa, or occur simultaneously, is presently unknown. We therefore studied the time-course of changes in thyroid hormone metabolism in the HPT axis of mice during acute illness induced by bacterial endotoxin (lipopolysaccharide; LPS).LPS rapidly induced interleukin-1beta mRNA expression in the hypothalamus, pituitary, thyroid and liver. This was followed by almost simultaneous changes in the pituitary (decreased expression of thyroid receptor (TR)-beta2, TSHbeta and 5'-deiodinase (D1) mRNAs), the thyroid (decreased TSH receptor mRNA) and the liver (decreased TRbeta1 and D1 mRNA). In the hypothalamus, type 2 deiodinase mRNA expression was strongly increased whereas preproTRH mRNA expression did not change after LPS. Serum T(3) and T(4) fell only after 24 h.Our results suggested almost simultaneous involvement of the whole HPT axis in the downregulation of thyroid hormone metabolism during acute illnes
ENHANCED CELL RECOVERY RESULTING IN HIGHER YIELDS OF MSC WHEN USING THE COBE 2991 FOR CELL DENSITY SEPARATION OF BONE MARROW MATERIAL: A VALIDATION STUDY BETWEEN TWO MSC PRODUCTION CENTERS
Stemcel biology/Regenerative medicine (incl. bloodtransfusion
Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins
To identify previously unknown platelet receptors we compared the transcriptomes of in vitro differentiated megakaryocytes (MKs) and erythroblasts (EBs). RNA was obtained from purified, biologically paired MK and EB cultures and compared using cDNA microarrays. Bioinformatical analysis of MK-up-regulated genes identified 151 transcripts encoding transmembrane domain-containing proteins. Although many of these were known platelet genes, a number of previously unidentified or poorly characterized transcripts were also detected. Many of these transcripts, including G6b, G6f, LRRC32, LAT2, and the G protein-coupled receptor SUCNR1, encode proteins with structural features or functions that suggest they may be involved in the modulation of platelet function. Immunoblotting on platelets confirmed the presence of the encoded proteins, and flow cytometric analysis confirmed the expression of G6b, G6f, and LRRC32 on the surface of platelets. Through comparative analysis of expression in platelets and other blood cells we demonstrated that G6b, G6f, and LRRC32 are restricted to the platelet lineage, whereas LAT2 and SUCNR1 were also detected in other blood cells. The identification of the succinate receptor SUCNR1 in platelets is of particular interest, because physiologically relevant concentrations of succinate were shown to potentiate the effect of low doses of a variety of platelet agonist
A HaemAtlas: characterizing gene expression in differentiated human blood cells
Hematopoiesis is a carefully controlled process that is regulated by complex networks of transcription factors that are, in part, controlled by signals resulting from ligand binding to cell-surface receptors. To further understand hematopoiesis, we have compared gene expression profiles of human erythroblasts, megakaryocytes, B cells, cytotoxic and helper T cells, natural killer cells, granulocytes, and monocytes using whole genome microarrays. A bioinformatics analysis of these data was performed focusing on transcription factors, immunoglobulin superfamily members, and lineage-specific transcripts. We observed that the numbers of lineage-specific genes varies by 2 orders of magnitude, ranging from 5 for cytotoxic T cells to 878 for granulocytes. In addition, we have identified novel coexpression patterns for key transcription factors involved in hematopoiesis (eg, GATA3-GFI1 and GATA2-KLF1). This study represents the most comprehensive analysis of gene expression in hematopoietic cells to date and has identified genes that play key roles in lineage commitment and cell function. The data, which are freely accessible, will be invaluable for future studies on hematopoiesis and the role of specific genes and will also aid the understanding of the recent genome-wide association studies