4,078 research outputs found

    Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids

    Full text link
    We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate, that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure

    Discovery of a High Proper Motion L Dwarf Binary: 2MASS J15200224-4422419AB

    Full text link
    We report the discovery of the wide L1.5+L4.5 binary 2MASS J15200224-4422419AB, identified during spectroscopic followup of high proper motion sources selected from the Two Micron All Sky Survey. This source was independently identified by Kendall et al. in the SuperCOSMOS Sky Survey. Resolved JHK photometry and low resolution near-infrared spectroscopy demonstrate that this system is composed of two well-separated (1"174+/-0"016) L dwarfs. Component classifications are derived using both spectral ratios and comparison to near-infrared spectra of previously classified field L dwarfs. Physical association for the pair is deduced from the large (mu = 0"73+/-0"03 /yr) common proper motion of the components and their similar spectrophotometric distances (19+/-2 pc). The projected separation of the binary, 22+/-2 AU, is consistent with maximum separation/total system mass trends for very low mass binaries. The 2MASS J1520-4422 system exhibits both large tangential (66+/-7 km/s) and radial velocities (-70+/-18 km/s), and its motion in the local standard of rest suggests that it is an old member of the Galactic disk population. This system joins a growing list of well-separated (>0"5), very low mass binaries, and is an excellent target for resolved optical spectroscopy to constrain its age as well as trace activity/rotation trends near the hydrogen-burning limit.Comment: 35 pages, 8 figures; accepted for publication to ApJ; see also Kendall et al. astro-ph/060939

    JHK Magnitudes for L and T Dwarfs and Infrared Photometric Systems

    Full text link
    L and T dwarfs emit most of their radiation in the near infrared and their spectral energy distributions are dominated by strong molecular absorption bands. These highly structured energy distributions lead to JHK magnitudes that are extremely sensitive to the exact filter bandpass used. In the case of the T dwarfs, the differences between commonly used photometric systems can be as large as 0.4 mag at J and 0.5 mag at J-K. To address this problem, we have synthesized J,H and K magnitudes for some of the common photometric systems and present transformation equations. If the spectral type of the dwarf is known, our transformations allow data to be converted between systems to 0.01 mag, which is better than the typical measurement uncertainty. Transforming on the basis of color alone is more difficult because of the degeneracy and intrinsic scatter in near-infrared colors of L and T dwarfs; in this case J magnitudes can only be transformed to < 0.05 mag and H and K to < 0.02 mag.Comment: 26 pages including 9 figures, uses aastex, to be published in PASP Jan 200

    A Global Photometric Analysis of 2MASS Calibration Data

    Get PDF
    We present results from the application of a global photometric calibration (GPC) procedure to calibration data from the first 2 years of The Two Micron All Sky Survey (2MASS). The GPC algorithm uses photometry of both primary standards and moderately bright `tracer' stars in 35 2MASS calibration fields. During the first two years of the Survey, each standard was observed on approximately 50 nights, with about 900 individual measurements. Based on the photometry of primary standard stars and secondary tracer stars and under the assumption that the nightly zeropoint drift is linear, GPC ties together all calibration fields and all survey nights simultaneously, producing a globally optimized solution. Calibration solutions for the Northern and Southern hemisphere observatories are found separately, and are tested for global consistency based on common fields near the celestial equator. Several results from the GPC are presented, including establishing candidate secondary standards, monitoring of near-infrared atmospheric extinction coefficients, and verification of global validity of the standards. The solution gives long-term averages of the atmospheric extinction coefficients, A_J=0.096, A_H=0.026, A_{K_s}=0.066 (North) and A_J=0.092, A_H=0.031, A_{K_s}=0.065 (South), with formal error of 0.001. The residuals show small seasonal variations, most likely due to changing atmospheric content of water vapor. Extension of the GPC to approximately 100 field stars in each of the 35 calibration fields yields a catalog of more than two thousand photometric standards ranging from 10th to 14th magnitude, with photometry that is globally consistent to 1\sim 1%.Comment: 19 pages, 10 figures; Submitted to AJ. The table of secondary standards is available from ftp://nova.astro.umass.edu/pub/nikolaev/ or ftp://anon-ftp.ipac.caltech.edu/pub/2mass/globalcal

    Dynamic structure factors of a dense mixture

    Full text link
    We compute the dynamic structure factors of a dense binary liquid mixture. These describe dynamics on molecular length scales, where structural relaxation is important. We find that the presence of a few large particles in a dense fluid of small particles slows down the dynamics considerably. We also observe a deep narrowing of the spectrum for a disordered mixture composed of a nearly equal packing of the two species. In contrast, a few small particles diffuse easily in the background of a dense fluid of large particles. We expect our results to describe neutron scattering from a dense mixture

    The Magnetic Distortion Calibration System of the LHCb RICH1 Detector

    Get PDF
    The LHCb RICH1 detector uses hybrid photon detectors (HPDs) as its optical sensors. A calibration system has been constructed to provide corrections for distortions that are primarily due to external magnetic fields. We describe here the system design, construction, operation and performance.Comment: 9 pages, 14 figure

    Light scattering spectra of supercooled molecular liquids

    Full text link
    The light scattering spectra of molecular liquids are derived within a generalized hydrodynamics. The wave vector and scattering angle dependences are given in the most general case and the change of the spectral features from liquid to solidlike is discussed without phenomenological model assumptions for (general) dielectric systems without long-ranged order. Exact microscopic expressions are derived for the frequency-dependent transport kernels, generalized thermodynamic derivatives and the background spectra.Comment: 12 page

    Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics

    Get PDF
    This paper is the fifth in a series exploring the physical consequences of the solidity of glass-forming liquids. Paper IV proposed a model where the density field is described by a time-dependent Ginzburg-Landau equation of the nonconserved type with rates in kk space of the form Γ0+Dk2\Gamma_0+Dk^2. The model assumes that DΓ0a2D\gg\Gamma_0a^2 where aa is the average intermolecular distance; this inequality expresses a long-wavelength dominance of the dynamics which implies that the Hamiltonian (free energy) to a good approximation may be taken to be ultralocal. In the present paper we argue that this is the simplest model consistent with the following three experimental facts: 1) Viscous liquids approaching the glass transition do not develop long-range order; 2) The glass has lower compressibility than the liquid; 3) The alpha process involves several decades of relaxation times shorter than the mean relaxation time. The paper proceeds to list six further experimental facts characterizing equilibrium viscous liquid dynamics and shows that these are readily understood in terms of the model; some are direct consequences, others are quite natural when viewed in light of the model

    Growing spatial correlations of particle displacements in a simulated liquid on cooling toward the glass transition

    Full text link
    We define a correlation function that quantifies the spatial correlation of single-particle displacements in liquids and amorphous materials. We show for an equilibrium liquid that this function is related to fluctuations in a bulk dynamical variable. We evaluate this function using computer simulations of an equilibrium glass-forming liquid, and show that long range spatial correlations of displacements emerge and grow on cooling toward the mode coupling critical temperature

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR
    corecore