15,387 research outputs found

    Atmospheric Charged K/πK/\pi Ratio and Measurement of Muon Annual Modulation with a Liquid Scintillation Detector at Soudan

    Full text link
    We report a measurement of muon annual modulation in a 12-liter liquid scintillation detector with a live-time of more than 4 years at the Soudan Underground Laboratory. Muon minimum ionization in the detector is identified by its observed pulse shape and large energy deposition. The measured muon rate in the detector is 28.69±\pm2.09 muons per day with a modulation amplitude of 2.66±\pm 1.0\% and a phase at Jul 22 ±\pm 36.2 days. This annual modulation is correlated with the variation of the effective atmospheric temperature in the stratosphere. The correlation coefficient, αT\alpha_{T}, is determined to be 0.898±0.0250.898 \pm 0.025. This can be interpreted as a measurement of the atmospheric charged kaon to pion (KK/π\pi) ratio of 0.0940.061+0.044^{+0.044}_{-0.061} for Ep>E_{p} > 7 TeV, consistent with the measurement from the MINOS far detector. To further constrain the value of KK/π\pi ratio, a Geant4 simulation of the primary cosmic-ray protons with energy up to 100 TeV is implemented to study the correlation of KK/π\pi ratio and the muon annual modulation for muon energy greater than 0.5 TeV. We find out that a charged KK/π\pi ratio of 0.1598, greater than the upper bound (0.138) from this work at the production point 30 km above the Earth surface in the stratosphere cannot induce muon annual modulation at the depth of Soudan.Comment: 6 pages and 11 figure

    Early Results on Radioactive Background Characterization for Sanford Laboratory and DUSEL Experiments

    Full text link
    Measuring external sources of background for a deep underground laboratory at the Homestake Mine is an important step for the planned low-background experiments. The naturally occurring γ\gamma-ray fluxes at different levels in the Homestake Mine are studied using NaI detectors and Monte Carlo simulations. A simple algorithm is developed to convert the measured γ\gamma-ray rates into γ\gamma-ray fluxes. A good agreement between the measured and simulated γ\gamma-ray fluxes is achieved with the knowledge of the chemical composition and radioactivity levels in the rock. The neutron fluxes and γ\gamma-ray fluxes are predicted by Monte Carlo simulations for different levels including inaccessible levels that are under construction for the planned low background experiments.Comment: 16 pages, 2 figures, and 9 table

    Scaling Theory of Heat Transport in Quasi-1D Disordered Harmonic Chains

    Full text link
    We introduce a variant of the Banded Random Matrix ensemble and show, using detailed numerical analysis and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a one-parameter scaling law. The resulting beta-function indicates that an anomalous Fourier law is applicable in the diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our approach opens a new way to investigate the effects of Anderson localization in heat conduction, based on the powerful ideas of scaling theory.Comment: Supplemental Report on calculation of heat current include

    Periodicities in the occurrence of aurora as indicators of solar variability

    Get PDF
    A compilation of records of the aurora observed in China from the Time of the Legends (2000 - 3000 B.C.) to the mid-18th century has been used to infer the frequencies and strengths of solar activity prior to modern times. A merging of this analysis with auroral and solar activity patterns during the last 200 years provides basically continuous information about solar activity during the last 2000 years. The results show periodicities in solar activity that contain average components with a long period (approx. 412 years), three middle periods (approx. 38 years, approx. 77 years, and approx. 130 years), and the well known short period (approx. 11 years)

    Ground States for Exponential Random Graphs

    Full text link
    We propose a perturbative method to estimate the normalization constant in exponential random graph models as the weighting parameters approach infinity. As an application, we give evidence of discontinuity in natural parametrization along the critical directions of the edge-triangle model.Comment: 12 pages, 3 figures, 1 tabl

    Probing Localization in Absorbing Systems via Loschmidt Echos

    Full text link
    We measure Anderson localization in quasi-one-dimensional waveguides in the presence of absorption by analyzing the echo dynamics due to small perturbations. We specifically show that the inverse participation number of localized modes dictates the decay of the Loschmidt echo, differing from the Gaussian decay expected for diffusive or chaotic systems. Our theory, based on a random matrix modeling, agrees perfectly with scattering echo measurements on a quasi one-dimensional microwave cavity filled with randomly distributed scatterers.Comment: cross-reference with nonlin.CD-Chaotic Dynamic
    corecore