38,768 research outputs found

    Roles of the Bloom's syndrome helicase in the maintenance of genome stability

    Get PDF
    The RecQ family of DNA helicases is highly conserved in evolution from bacteria to humans. Of the five known human RecQ family members, three (BLM, WRN and RECQ4, which cause Bloom's syndrome, Werner's syndrome and Rothmund-Thomson syndrome respectively) are mutated in distinct clinical disorders associated with cancer predisposition and/or premature aging. BLM forms part of a multienzyme complex including topoisomerase IIIalpha, replication protein A and a newly identified factor called BLAP75. Together, these proteins play a role in the resolution of DNA structures that arise during the process of homologous recombination repair. In the absence of BLM, cells show genomic instability and a high incidence of sister-chromatid exchanges. In addition to a DNA structure-specific helicase activity, BLM also catalyses Holliday-junction branch migration and the annealing of complementary single-stranded DNA molecules

    Supercritical multicomponent solvent coal extraction

    Get PDF
    The yield of organic extract from the supercritical extraction of coal with larger diameter organic solvents such as toluene is increased by use of a minor amount of from 0.1 to 10% by weight of a second solvent such as methanol having a molecular diameter significantly smaller than the average pore diameter of the coal

    Applications of physical methods in high-frequency futures markets

    Get PDF
    In the present work we demonstrate the application of different physical methods to high-frequency or tick-by-tick financial time series data. In particular, we calculate the Hurst exponent and inverse statistics for the price time series taken from a range of futures indices. Additionally, we show that in a limit order book the relaxation times of an imbalanced book state with more demand or supply can be described by stretched exponential laws analogous to those seen in many physical systems.Comment: 14 Pages and 10 figures. Proceeding to the SPIE conference, 4 - 7 December 2007 Australian National Univ. Canberra, ACT, Australi

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-LL\star starburst, and LL\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and LL\star galaxies with constant isotropic diffusion coefficient κ3×1029cm2s1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and LL\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Gravitation and Cosmology in Generalized (1+1)-dimensional dilaton gravity

    Get PDF
    The actions of the ``R=TR=T'' and string-inspired theories of gravity in (1+1) dimensions are generalized into one single action which is characterized by two functions. We discuss differing interpretations of the matter stress-energy tensor, and show how two such different interpretations can yield two different sets of field equations from this action. The weak-field approximation, post-Newtonian expansion, hydrostatic equilibrium state of star and two-dimensional cosmology are studied separately by using the two sets of field equations. Some properties in the ``R=TR=T'' and string-inspired theories are shown to be generic in the theory induced by the generalized action.Comment: 34 page

    Phase separation in an homogeneous shear flow: Morphology, growth laws and dynamic scaling

    Full text link
    We investigate numerically the influence of an homogeneous shear flow on the spinodal decomposition of a binary mixture by solving the Cahn-Hilliard equation in a two-dimensional geometry. Several aspects of this much studied problem are clarified. Our numerical data show unambiguously that, in the shear flow, the domains have on average an elliptic shape. The time evolution of the three parameters describing this ellipse are obtained for a wide range of shear rates. For the lowest shear rates investigated, we find the growth laws for the two principal axis R(t)constantR_\perp (t) \sim constant, R(t)tR_\parallel(t) \sim t, while the mean orientation of the domains with respect to the flow is inversely proportional to the strain. This implies that when hydrodynamics is neglected a shear flow does not stop the domain growth process. We investigate also the possibility of dynamic scaling, and show that only a non trivial form of scaling holds, as predicted by a recent analytical approach to the case of a non-conserved order parameter. We show that a simple physical argument may account for these results.Comment: Version accepted for publication - Physical Review
    corecore