83,330 research outputs found

    Mapping of AlxGa1–xAs band edges by ballistic electron emission spectroscopy

    Get PDF
    We have employed ballistic electron emission microscopy (BEEM) to study the energy positions in the conduction band of AlxGa1 – xAs. Epilayers of undoped AlxGa1 – xAs were grown by molecular beam epitaxy on conductive GaAs substrates. The Al composition x took on values of 0, 0.11, 0.19, 0.25, 0.50, 0.80 and 1 so that the material was examined in both the direct and indirect band gap regime. The AlxGa1 – xAs layer thickness was varied from 100 to 500 Å to ensure probing of bulk energy levels. Different capping layers and surface treatments were explored to prevent surface oxidation and examine Fermi level pinning at the cap layer/AlxGa1 – xAs interface. All samples were metallized ex situ with a 100 Å Au layer so that the final BEEM structure is of the form Au/capping layer/AlxGa1 – xAs/bulk GaAs. Notably we have measured the Schottky barrier height for Au on AlxGa1 – xAs. We have also probed the higher lying band edges such as the X point at low Al concentrations and the L point at high Al concentrations. Variations of these critical energy positions with Al composition x were mapped out in detail and compared with findings from other studies. Local variations of these energy positions were also examined and found to be on the order of 30–50 meV. The results of this study suggest that BEEM can provide accurate positions for multiple energy levels in a single semiconductor structure

    Classification of finite irreducible modules over the Lie conformal superalgebra CK6

    Full text link
    We classify all continuous degenerate irreducible modules over the exceptional linearly compact Lie superalgebra E(1, 6), and all finite degenerate irreducible modules over the exceptional Lie conformal superalgebra CK6, for which E(1, 6) is the annihilation algebra

    Combining Genome Wide Association Studies and Differential Gene Expression Data Analyses Identifies Candidate Genes Affecting Mastitis Caused by Two Different Pathogens in the Dairy Cow

    Get PDF
    Mastitis is a costly disease which hampers the dairy industry. Inflammation of the mammary gland is commonly caused by bacterial infection, mainly Escherichia coli, Streptococcus uberis and Staphylococcus aureus. As more bacteria become multi-drug resistant, one potential approach to reduce the disease incidence rate is to breed selectively for the most appropriate and potentially protective innate immune response. The genetic contribution to effective disease resistance is, however, difficult to identify due to the complex interactions that occur. In the present study two published datasets were searched for common differentially expressed genes (DEGs) with similar changes in expression in mammary tissue following intra-mammary challenge with either E. coli or S. uberis. Additionally, the results of seven published genome-wide association studies (GWAS) on different dairy cow populations were used to compile a list of SNPs associated with somatic cell count. All genes located within 2 Mbp of significant SNPs were retrieved from the Ensembl database, based on the UMD3.1 assembly. A final list of 48 candidate genes with a role in the innate immune response identified from both the DEG and GWAS studies was further analyzed using Ingenuity Pathway Analysis. The main signalling pathways highlighted in the response of the bovine mammary gland to both bacterial infections were 1) granulocyte adhesion and diapedesis, 2) ephrin receptor signalling, 3) RhoA signalling and 4) LPS/IL1 mediated inhibition of RXR function. These pathways comprised a network regulating the activity of leukocytes, especially neutrophils, during mammary gland inflammation. The timely and properly controlled movement of leukocytes to infection loci seems particularly important in achieving a good balance between pathogen elimination and excessive tissue damage. These results suggest that polymorphisms in key genes in these pathways such as SELP, SELL, BCAR1, ACTR3, CXCL2, CXCL6, CXCL8 and FABP may influence the ability of dairy cows to resist mastitis

    Hierarchical Lattice Models of Hydrogen Bond Networks in Water

    Full text link
    We develop a graph-based model of the hydrogen bond network in water, with a view towards quantitatively modeling the molecular-level correlational structure of the network. The networks are formed are studied by the constructing the model on two infinite-dimensional lattices. Our models are built \emph{bottom up}, based on microscopic information coming from atomistic simulations, and we show that the predictions of the model are consistent with known results from ab-initio simulations of liquid water. We show that simple entropic models can predict the correlations and clustering of local-coordination defects around tetrahedral waters observed in the atomistic simulations. We also find that orientational correlations between bonds are longer ranged than density correlations, and determine the directional correlations within closed loops and show that the patterns of water wires within these structures are also consistent with previous atomistic simulations. Our models show the existence of density and compressibility anomalies, as seen in the real liquid, and the phase diagram of these models is consistent with the singularity-free scenario previously proposed by Sastry and co-workers (Sastry et al, PRE 53, 6144 (1996)).Comment: 17 pages, published versio
    • …
    corecore