11,965 research outputs found

    Non-adiabatic generation of a pure spin current in a 1D quantum ring with spin-orbit interaction

    Full text link
    We demonstrate the theoretical possibility of obtaining a pure spin current in a 1D ring with spin-orbit interaction by irradiation with a non-adiabatic, two-component terahertz laser pulse, whose spatial asymmetry is reflected by an internal dephasing angle Ï•\phi. The stationary solutions of the equation of motion for the density operator are obtained for a spin-orbit coupling linear in the electron momentum (Rashba) and used to calculate the time-dependent charge and spin currents. We find that there are critical values of Ï•\phi at which the charge current disappears, while the spin current reaches a maximum or a minimum value.Comment: 8 pages, 5 figure

    The Power of Axisymmetric Pulsar

    Full text link
    Stationary force-free magnetosphere of an axisymmetric pulsar is shown to have a separatrix inclination angle of 77.3∘^\circ. The electromagnetic field has an R−1/2R^{-1/2} singularity inside the separatrix near the light cylinder. A numerical simulation of the magnetosphere which crudely reproduces these properties is presented. The numerical results are used to estimate the power of an axisymmetric pulsar: L=(1±0.1)μ2Ω4/c3L=(1\pm 0.1)\mu^2\Omega^4/c^3. A need for a better numerical simulation is pointed out.Comment: 9 page

    Photon acceleration in variable ultra-relativistic outflows and high-energy spectra of Gamma-Ray Bursts

    Get PDF
    MeV seed photons produced in shocks in a variable ultra-relativistic outflow gain energy by the Fermi mechanism, because the photons Compton scatter off relativistically colliding shells. The Fermi-modified high-energy photon spectrum has a non-universal slope and a universal cutoff. A significant increase in the total radiative efficiency is possible. In some gamma ray bursts, most of the power might be emitted at the high-energy cutoff for this mechanism, which would be close to 100 MeV for outflows with a mean bulk Lorentz factor of 100.Comment: 8 pages, submitted to ApJ

    Weak Localization in a Lateral Superlattice with Rashba and Dresselhaus Spin-Orbit Interaction

    Get PDF
    We calculate the weak localization (WL) correction to the conductivity of a lateral superlattice (LSL) with Rashba (R)-Dresselhaus (D) spin-orbit interaction (SOI). The superlattice is modeled as a sequence of parallel wires that support tunneling between adjacent sites, leading to the formation of extended Bloch states along its axis and a miniband in the energy spectrum. Our results, obtained by calculating the eigenvalues of the Cooperon operator in the diffusion approximation, indicate that the electron dephasing rate that determines the antilocalization correction is enhanced by a term proportional with the LSL potential and the bandwidth. Within the same formalism, the spin-relaxation rates associated with the localization corrections are found to exhibit a strong anisotropy dictated by the relative strength of the two SOI couplings, as well as by the orientation of the LSL axis

    Observations of Hierarchical Solar-Type Multiple Star Systems

    Get PDF
    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.Comment: Accepted to Astronomical Journa

    Origin and stability of the dipolar response in a family of tetragonal tungsten bronze relaxors

    Full text link
    A new family of relaxor dielectrics with the tetragonal tungsten bronze structure (nominal composition Ba6M3+Nb9O30, M3+ = Ga, Sc or In) were studied using dielectric spectroscopy to probe the dynamic dipole response and correlate this with the crystal structure as determined from powder neutron diffraction. Independent analyses of real and imaginary parts of the complex dielectric function were used to determine characteristic temperature parameters, TVF, and TUDR, respectively. In each composition both these temperatures correlated with the temperature of maximum crystallographic strain, Tc/a determined from diffraction data. The overall behaviour is consistent with dipole freezing and the data indicate that the dipole stability increases with increasing M3+ cation size as a result of increased tetragonality of the unit cell. Crystallographic data suggests that these materials are uniaxial relaxors with the dipole moment predominantly restricted to the B1 cation site in the structure. Possible origins of the relaxor behaviour are discussed.Comment: Main article 32 pages, 8 figures; Supplementary data 24 pages, 4 figure
    • …
    corecore