315 research outputs found

    Plasmas in Saturn's magnetosphere

    Get PDF
    The solar wind plasma analyzer on board Pioneer 2 provides first observations of low-energy positive ions in the magnetosphere of Saturn. Measurable intensities of ions within the energy-per-unit charge (E/Q) range 100 eV to 8 keV are present over the planetocentric radial distance range about 4 to 16 R sub S in the dayside magnetosphere. The plasmas are found to be rigidly corotating with the planet out to distances of at least 10 R sub S. At radial distances beyond 10 R sub S, the bulk flows appear to be in the corotation direction but with lesser speeds than those expected from rigid corotation. At radial distances beyond the orbit of Rhea at 8.8 R sub S, the dominant ions are most likely protons and the corresponding typical densities and temperatures are 0.5/cu cm and 1,000,000 K, respectively, with substantial fluctuations. It is concluded that the most likely source of these plasmas in the photodissociation of water frost on the surface of the ring material with subsequent ionization of the products and radially outward diffusion. The presence of this plasma torus is expected to have a large influence on the dynamics of Saturn's magnetosphere since the pressure ratio beta of these plasmas approaches unity at radial distances as close to the planet as 6.5 R sub S. On the basis of these observational evidences it is anticipated that quasi-periodic outward flows of plasma, accompanied with a reconfiguration of the magnetosphere beyond about 6.5 R sub S, will occur in the local night sector in order to relieve the plasma pressure from accretion of plasma from the rings

    Accuracy assessment of ISI-MIP modelled flows in the Hidukush-Karakoram-Himalayan basins

    Get PDF
    Large Asian rivers heading in the Hindukush-Karakoram-Himalayan mountains, and whose streamflow includes significant snow-melt and glacier-melt components, may be highly susceptible to climate warming and pattern changes. Millions of people depend on these streamflows for agriculture and power generation. Reliable predictions of future water availability are therefore needed for planning under a changing climate, and depend on the quality of hydro-climatic modelling. ISI-MIP provides global hydrological modelling results, and need validation at regional scale. This study evaluates the accuracy of modelled flows from the hydrological models used in ISI-MIP, in various sub-basins of the Upper Indus Basin (UIB) and for the reference period 1985-1998. The modelled flows are based on six hydrological models, which are: i) H08, ii) VIC, iii) WaterGAP, iv) WBM, v) MPI-HM, vi) PCR-GLOBWB. Of these models, H08 and VIC are energy-based hydrological models, while the others are temperature-based hydrological models. WBM and MPI are not suitable for the UIB, due to significant under-estimation (by 70-90%) of measured flows by their modelled flows. The remaining four models provide consistent, but still significantly under-estimated flows (up to 60% of measured flows) in all sub-basins, except the Kharmong basin. Monthly differences between modelled and measured flows vary between sub-basins, but with noticeable over-estimation in winter-spring months and under-estimation during summer months. Accuracy of the bias-corrected precipitation data sets (based on five GCMs) used in the ISI-MIP hydrological models has been assessed, using a basin-wide water balance assessment method. This method shows that all precipitation data sets significantly under-estimate precipitation in the UIB, particularly in the Karakoram sub-basins. The selected ISI-MIP hydrological models have used precipitation data which are under-estimates, which may be a main reason for under-estimated flows. ISI-MIP hydrological modelling needs to use the best available precipitation data for the UIB, but other input data and calibration parameters also need revision. An important message from this study is that caution must be exercised in selecting precipitation data sets and hydrological models in alpine regions such as the Hindukush-Karakoram-Himalayas

    Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities

    Get PDF
    The present study investigated a cradle-to-grave life cycle assessment to estimate the environmental impacts associated with Italian mozzarella cheese consumption. The differences between mozzarella produced from raw milk and mozzarella produced from curd were studied, and differences in manufacturing processes have been emphasized in order to provide guidance for targeted improvements at this phase. Specifically, the third-largest Italian mozzarella producer was surveyed to collect site-specific manufacturing data. The Ecoinvent v3.2 database was used for secondary data, whereas SimaPro 8.1 was the modeling software. The inventory included inputs from farm activities to end of life disposal of wasted mozzarella and packaging. Additionally, plant-specific information was used to assign major inputs, such as electricity, natural gas, packaging, and chemicals to specific products; however, where disaggregated information was not provided, milk solids allocation was applied. Notably, loss of milk solids was accounted during the manufacture, moreover mozzarella waste and transport were considered during distribution, retail, and consumption phases. Feed production and animal emissions were the main drivers of raw milk production. Electricity and natural gas usage, packaging (cardboard and plastic), transport, wastewater treatment, and refrigerant loss affected the emissions from a farm gate-to-dairy plant gate perspective. Post-dairy plant gate effects were mainly determined by electricity usage for storage of mozzarella, transport of mozzarella, and waste treatment. The average emissions were 6.66 kg of CO2 equivalents and 45.1 MJ of cumulative energy demand/kg of consumed mozzarella produced directly from raw milk, whereas mozzarella from purchased curd had larger emissions than mozzarella from raw milk due to added transport of curd from specialty manufacturing plants, as well as electricity usage from additional processes at the mozzarella plant that are required to process the curd into mozzarella. Normalization points to ecotoxicity as the impact category most significantly influenced by mozzarella consumption. From a farm gate-to-grave perspective, ecotoxicity and freshwater and marine eutrophication are the first and second largest contributors of mozzarella consumption to average European effects, respectively. To increase environmental sustainability, an improvement of efficiency for energy and packaging usage and transport activities is recommended in the post-farm gate mozzarella supply chain

    South-to-North Water Diversion stabilizing Beijing’s groundwater levels

    Get PDF
    Groundwater (GW) overexploitation is a critical issue in North China with large GW level declines resulting in urban water scarcity, unsustainable agricultural production, and adverse ecological impacts. One approach to addressing GW depletion was to transport water from the humid south. However, impacts of water diversion on GW remained largely unknown. Here, we show impacts of the central South-to-North Water Diversion on GW storage recovery in Beijing within the context of climate variability and other policies. Water diverted to Beijing reduces cumulative GW depletion by ~3.6 km3, accounting for 40% of total GW storage recovery during 2006-2018. Increased precipitation contributes similar volumes to GW storage recovery of ~2.7 km3 (30%) along with policies on reduced irrigation (~2.8 km3, 30%). This recovery is projected to continue in the coming decade. Engineering approaches, such as water diversions, will increasingly be required to move towards sustainable water management

    South-to-North Water Diversion stabilizing Beijing’s groundwater levels

    Get PDF
    Groundwater (GW) overexploitation is a critical issue in North China with large GW level declines resulting in urban water scarcity, unsustainable agricultural production, and adverse ecological impacts. One approach to addressing GW depletion was to transport water from the humid south. However, impacts of water diversion on GW remained largely unknown. Here, we show impacts of the central South-to-North Water Diversion on GW storage recovery in Beijing within the context of climate variability and other policies. Water diverted to Beijing reduces cumulative GW depletion by ~3.6 km3, accounting for 40% of total GW storage recovery during 2006-2018. Increased precipitation contributes similar volumes to GW storage recovery of ~2.7 km3 (30%) along with policies on reduced irrigation (~2.8 km3, 30%). This recovery is projected to continue in the coming decade. Engineering approaches, such as water diversions, will increasingly be required to move towards sustainable water management

    Medication use by middle-aged and older participants of an exercise study: results from the Brain in Motion study

    Get PDF
    BACKGROUND: Over the past 50 years, there has been an increase in the utilization of prescribed, over-the-counter (OTC) medications, and natural health products. Although it is known that medication use is common among older persons, accurate data on the patterns of use, including the quantity and type of medications consumed in a generally healthy older population from a Canadian perspective are lacking. In this study, we study the pattern of medication use in a sedentary but otherwise healthy older persons use and determined if there was an association between medication use and aerobic fitness level. METHODS: All participants enrolled in the Brain in Motion study provided the name, formulation, dosage and frequency of any medications they were consuming at the time of their baseline assessment. Maximal aerobic capacity (VO(2)max) was determined on each participant. RESULTS: Two hundred seventy one participants (mean age 65.9 ± 6.5 years; range 55–92; 54.6% females) were enrolled. Most were taking one or more (1+) prescribed medication (n = 204, 75.3%), 1+ natural health product (n = 221, 81.5%) and/or 1+ over-the-counter (OTC) drug (n = 174, 64.2%). The most commonly used prescribed medications were HMG-CoA reductase inhibitors (statins) (n = 52, 19.2%). The most common natural health product was vitamin D (n = 201, 74.2%). For OTC drugs, non-steroidal anti-inflammatories (n = 82, 30.3%) were the most common. Females were more likely than males to take 1+ OTC medications, as well as supplements. Those over 65 years of age were more likely to consume prescription drugs than their counterparts (p ≤ 0.05). Subjects taking more than two prescribed or OTC medications were less physically fit as determined by their VO(2)max. The average daily Vitamin D intake was 1896.3 IU per participant. CONCLUSIONS: Medication use was common in otherwise healthy older individuals. Consumption was higher among females and those older than 65 years. Vitamin D intake was over two-fold higher than the recommended 800 IU/day for older persons, but within the tolerable upper intake of 4,000 IU/day. The appropriateness of the high rate of medication use in this generally healthy population deserves further investigation

    Targeted Epigenetic Remodeling of the \u3cem\u3eCdk5\u3c/em\u3e Gene in Nucleus Accumbens Regulates Cocain- and Stress-Evoked Behavior

    Get PDF
    Recent studies have implicated epigenetic remodeling in brain reward regions following psychostimulant or stress exposure. It has only recently become possible to target a given type of epigenetic remodeling to a single gene of interest, and to probe the functional relevance of such regulation to neuropsychiatric disease. We sought to examine the role of histone modifications at the murine Cdk5 (cyclin-dependent kinase 5) locus, given growing evidence of Cdk5 expression in nucleus accumbens (NAc) influencing reward-related behaviors. Viral-mediated delivery of engineered zinc finger proteins (ZFP) targeted histone H3 lysine 9/14 acetylation (H3K9/14ac), a transcriptionally active mark, or histone H3 lysine 9 dimethylation (H3K9me2), which is associated with transcriptional repression, specifically to the Cdk5 locus in NAc in vivo. We gound that Cdk5-ZFP transcription factors are sufficient to bidirectionally regulate Cdk5 gene expression via enrichment of their respective histone modifications. We examined the behavioral consequences of this epigenetic remodeling and found that Cdk5-targeted H3K9/14ac increased cocaine-induced locomotor behavior, as well as resilience to social stress. Conversely, Cdk5-targeted H3K9me2 attenuated both cocaine-induced locomotor behavior and conditioned place preference, but had no effect on stress-induced social avoidance behavior. The current study provides evidence for the causal role of Cdk5 epigenetic remodeling in NAc in Cdk5 gene expression and in the control of reward and stress responses. Moreover, these data are especially compelling given that previous work demonstrated opposite behavioral phenotypes compared with those reported here upon Cdk5 overexpression or knockdown, demonstrating the importance of targeted epigenetic remodeling tools for studying more subtle molecular changes that contribute to neuropsychiatric disease
    • …
    corecore