68 research outputs found

    Magnetic moment of an electron gas on the surface of constant negative curvature

    Full text link
    The magnetic moment of an electron gas on the surface of constant negative curvature is investigated. It is shown that the surface curvature leads to the appearance of the region of the monotonic dependence M(B)M(B) at low magnetic fields. At high magnetic fields, the dependence of the magnetic moment on a magnetic field is the oscillating one. The effect of the surface curvature is to increase the region of the monotonic dependence of the magnetic moment and to break the periodicity of oscillations of the magnetic moment as a function of an inverse magnetic field.Comment: 4 pages, 1 figur

    Observation of extremely slow hole spin relaxation in self-assembled quantum dots

    Full text link
    We report the measurement of extremely slow hole spin relaxation dynamics in small ensembles of self-assembled InGaAs quantum dots. Individual spin orientated holes are optically created in the lowest orbital state of each dot and read out after a defined storage time using spin memory devices. The resulting luminescence signal exhibits a pronounced polarization memory effect that vanishes for long storage times. The hole spin relaxation dynamics are measured as a function of external magnetic field and lattice temperature. We show that hole spin relaxation can occur over remarkably long timescales in strongly confined quantum dots (up to ~270 us), as predicted by recent theory. Our findings are supported by calculations that reproduce both the observed magnetic field and temperature dependencies. The results suggest that hole spin relaxation in strongly confined quantum dots is due to spin orbit mediated phonon scattering between Zeeman levels, in marked contrast to higher dimensional nanostructures where it is limited by valence band mixing.Comment: Published by Physical Review

    Coupling curvature to a uniform magnetic field; an analytic and numerical study

    Full text link
    The Schrodinger equation for an electron near an azimuthally symmetric curved surface Σ\Sigma in the presence of an arbitrary uniform magnetic field B\mathbf B is developed. A thin layer quantization procedure is implemented to bring the electron onto Σ\Sigma, leading to the well known geometric potential VCh2kV_C \propto h^2-k and a second potential that couples ANA_N, the component of A\mathbf A normal to Σ\Sigma to mean surface curvature, as well as a term dependent on the normal derivative of ANA_N evaluated on Σ\Sigma. Numerical results in the form of ground state energies as a function of the applied field in several orientations are presented for a toroidal model.Comment: 12 pages, 3 figure

    Real Time Electron Tunneling and Pulse Spectroscopy in Carbon Nanotube Quantum Dots

    Full text link
    We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime where the QD is nearly isolated from the leads. An aluminum single electron transistor (SET) serves as a charge detector for the QD. We precisely measure and tune the tunnel rates into the QD in the range between 1 kHz and 1 Hz, using both pulse spectroscopy and real - time charge detection and measure the excitation spectrum of the isolated QD.Comment: 12 pages, 5 figure

    Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot

    Full text link
    We theoretically study the interaction of a heavy hole with nuclear spins in a quasi-two-dimensional III-V semiconductor quantum dot and the resulting dephasing of heavy-hole spin states. It has frequently been stated in the literature that heavy holes have a negligible interaction with nuclear spins. We show that this is not the case. In contrast, the interaction can be rather strong and will be the dominant source of decoherence in some cases. We also show that for unstrained quantum dots the form of the interaction is Ising-like, resulting in unique and interesting decoherence properties, which might provide a crucial advantage to using dot-confined hole spins for quantum information processing, as compared to electron spins

    Gallstone ileus in a middle-aged male with an atypical history: a case report

    Get PDF
    Currently, gallstone ileus is an unusual complication of cholelithiasis (0.3–3.0 %) and a rare cause of mechanical bowel obstruction (0.1–4.0 %). The rarity of the condition makes it impossible to plan the large prospective randomized clinical trials, so the analysis of case reports is significant for decision making in the management of gallstone ileus. We report a case of gallstone ileus in a middle-aged male who had a history of surgery for duodenal ulcer perforation in past. A combination of peptic ulcer disease and cholelithiasis is based on a reduced gastrointestinal hormones secretion. Clinical specialists need to consider information about the greater frequency and asymptomatic clinical course of gallstone disease against a background of duodenal ulcer. Duodenal ulcer scar and bulbar deformity may promote to the cholecystoduodenal fistula formation. In the presence of an acute bowel obstruction symptoms and the absence of gallbladder instrumental examination results, it is possible to recommend the prior gastroduodenoscopy for the pre-operative pneumobilia detection. The optimal surgical approaches for acute gallstone ileus are still controversial

    Tunable few-electron double quantum dots and Klein tunnelling in ultra-clean carbon nanotubes

    Full text link
    Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has until now prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultra-clean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to that in the Klein paradox of relativistic quantum mechanics.Comment: 21 pages including supplementary informatio

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed

    Electrical control over single hole spins in nanowire quantum dots

    Get PDF
    Single electron spins in semiconductor quantum dots (QDs) are a versatile platform for quantum information processing, however controlling decoherence remains a considerable challenge. Recently, hole spins have emerged as a promising alternative. Holes in III-V semiconductors have unique properties, such as strong spin-orbit interaction and weak coupling to nuclear spins, and therefore have potential for enhanced spin control and longer coherence times. Weaker hyperfine interaction has already been reported in self-assembled quantum dots using quantum optics techniques. However, challenging fabrication has so far kept the promise of hole-spin-based electronic devices out of reach in conventional III-V heterostructures. Here, we report gate-tuneable hole quantum dots formed in InSb nanowires. Using these devices we demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tuneable between hole and electron QDs, enabling direct comparison between the hyperfine interaction strengths, g-factors and spin blockade anisotropies in the two regimes
    corecore