23 research outputs found
An Innovative, Prospective, Hybrid Cohort-Cluster Study Design to Characterize Dengue Virus Transmission in Multigenerational Households in Kamphaeng Phet, Thailand
Difficulties inherent in the identification of immune correlates of protection or severe disease have challenged the development and evaluation of dengue vaccines. There persist substantial gaps in knowledge about the complex effects of age and sequential dengue virus (DENV) exposures on these correlations. To address these gaps, we were conducting a novel family-based cohort-cluster study for DENV transmission in Kamphaeng Phet, Thailand. The study began in 2015 and is funded until at least 2023. As of May 2019, 2,870 individuals in 485 families were actively enrolled. The families comprise at least 1 child born into the study as a newborn, 1 other child, a parent, and a grandparent. The median age of enrolled participants is 21 years (range 0–93 years). Active surveillance is performed to detect acute dengue illnesses, and annual blood testing identifies subclinical seroconversions. Extended follow-up of this cohort will detect sequential infections and correlate antibody kinetics and sequence of infections with disease outcomes. The central goal of this prospective study is to characterize how different DENV exposure histories within multigenerational family units, from DENV-naive infants to grandparents with multiple prior DENV exposures, affect transmission, disease, and protection at the level of the individual, household, and community
Dengue virus neutralizing antibody levels associated with protection from infection in Thai cluster studies
BACKGROUND: Long-term homologous and temporary heterologous protection from dengue virus (DENV) infection may be mediated by neutralizing antibodies. However, neutralizing antibody titers (NTs) have not been clearly associated with protection from infection.
METHODOLOGY/PRINCIPAL FINDINGS: Data from two geographic cluster studies conducted in Kamphaeng Phet, Thailand were used for this analysis. In the first study (2004-2007), cluster investigations of 100-meter radius were triggered by DENV-infected index cases from a concurrent prospective cohort. Subjects between 6 months and 15 years old were evaluated for DENV infection at days 0 and 15 by DENV PCR and IgM ELISA. In the second study (2009-2012), clusters of 200-meter radius were triggered by DENV-infected index cases admitted to the provincial hospital. Subjects of any age 6 months and older were evaluated for DENV infection at days 0 and 14. In both studies, subjects who were DENV PCR positive at day 14/15 were considered to have been susceptible on day 0. Comparison subjects from houses in which someone had documented DENV infection, but the subject remained DENV negative at days 0 and 14/15, were considered non-susceptible. Day 0 samples were presumed to be from just before virus exposure, and underwent plaque reduction neutralization testing (PRNT). Seventeen susceptible (six DENV-1, five DENV-2, and six DENV-4), and 32 non-susceptible (13 exposed to DENV-1, 10 DENV-2, and 9 DENV-4) subjects were evaluated. Comparing subjects exposed to the same serotype, receiver operating characteristic (ROC) curves identified homotypic PRNT titers of 11, 323 and 16 for DENV-1, -2 and -4, respectively, to differentiate susceptible from non-susceptible subjects.
CONCLUSIONS/SIGNIFICANCE: PRNT titers were associated with protection from infection by DENV-1, -2 and -4. Protective NTs appeared to be serotype-dependent and may be higher for DENV-2 than other serotypes. These findings are relevant for both dengue epidemiology studies and vaccine development efforts
Antibodies against Immature Virions Are Not a Discriminating Factor for Dengue Disease Severity
Humoral immunity plays an important role in controlling dengue virus (DENV) infection. Antibodies (Abs) developed during primary infection protect against subsequent infection with the same dengue serotype, but can enhance disease following secondary infection with a heterologous serotype. A DENV virion has two surface proteins, envelope protein E and (pre)-membrane protein (pr)M, and inefficient cleavage of the prM protein during maturation of progeny virions leads to the secretion of immature and partially immature particles. Interestingly, we and others found that historically regarded non-infectious prM-containing DENV particles can become highly infectious in the presence of E- and prM-Abs. Accordingly, we hypothesized that these virions contribute to the exacerbation of disease during secondary infection. Here, we tested this hypothesis and investigated the ability of acute sera of 30 DENV2-infected patients with different grades of disease severity, to bind, neutralize and/or enhance immature DENV2. We found that a significant fraction of serum Abs bind to the prM protein and to immature virions, but we observed no significant difference between the disease severity groups. Furthermore, functional analysis of the Abs did not underscore any specific correlation between the neutralizing/enhancing activity towards immature DENV2 and the development of more severe disease. Based on our analysis of acute sera, we conclude that Abs binding to immature virions are not a discriminating factor in dengue pathogenesis
High rate of A(H1N1)pdm09 infections among rural Thai villagers, 2009-2010
10.1371/journal.pone.0106751PLoS ONE99e10675
High rate of A(H1N1)pdm09 infections among rural Thai villagers, 2009-2010.
Pandemic influenza A(H1N1)pdm09 emerged in Thailand in 2009. A prospective longitudinal adult cohort and household transmission study of influenza-like illness (ILI) was ongoing in rural Thailand at the time of emergence. Symptomatic and subclinical A(H1N1)pdm09 infection rates in the cohort and among household members were evaluated.A cohort of 800 Thai adults underwent active community-based surveillance for ILI from 2008-2010. Acute respiratory samples from ILI episodes were tested for A(H1N1)pdm09 by qRT-PCR; acute and 60-day convalescent blood samples were tested by A(H1N1)pdm09 hemagglutination inhibition assay (HI). Enrollment, 12-month and 24-month follow-up blood samples were tested for A(H1N1)pdm09 seroconversion by HI. Household members of influenza A-infected cohort subjects with ILI were enrolled in household transmission investigations in which day 0 and 60 blood samples and acute respiratory samples were tested by either qRT-PCR or HI for A(H1N1)pdm09. Seroconversion between annual blood samples without A(H1N1)pdm09-positive ILI was considered as subclinical infection.The 2-yr cumulative incidence of A(H1N1)pdm09 infection in the cohort in 2009/2010 was 10.8% (84/781) with an annual incidence of 1.2% in 2009 and 9.7% in 2010; 83.3% of infections were subclinical (50% in 2009 and 85.9% in 2010). The 2-yr cumulative incidence was lowest (5%) in adults born ≤ 1957. The A(H1N1)pdm09 secondary attack rate among household contacts was 47.2% (17/36); 47.1% of these infections were subclinical. The highest A(H1N1)pdm09 secondary attack rate among household contacts (70.6%, 12/17) occurred among children born between 1990 and 2003.Subclinical A(H1N1)pdm09 infections in Thai adults occurred frequently and accounted for a greater proportion of all A(H1N1)pdm09 infections than previously estimated. The role of subclinical infections in A(H1N1)pdm09 transmission has important implications in formulating strategies to predict and prevent the spread of A(H1N1)pdm09 and other influenza virus strains
Correlation between reported dengue illness history and seropositivity in rural Thailand
In the latest World Health Organization (WHO) recommendation for Dengvaxia implementation, either serological testing or a person’s history of prior dengue illness may be used as supporting evidence to identify dengue virus (DENV)-immune individuals eligible for vaccination, in areas with limited capacity for laboratory confirmation. This analysis aimed to estimate the concordance between self-reported dengue illness histories and seropositivity in a prospective cohort study for dengue virus infection in Kamphaeng Phet province, a dengue-endemic area in northern Thailand. The study enrolled 2,076 subjects from 516 multigenerational families, with a median age of 30.6 years (range 0–90 years). Individual and family member dengue illness histories were obtained by questionnaire. Seropositivity was defined based on hemagglutination inhibition (HAI) assays. Overall seropositivity for DENV was 86.5% among those aged 9–45 years, which increased with age. 18.5% of participants reported a history of dengue illness prior to enrollment; 30.1% reported a previous DENV infection in the family, and 40.1% reported DENV infection in either themselves or a family member. Relative to seropositivity by HAI in the vaccine candidate group, the sensitivity and specificity of individual prior dengue illness history were 18.5% and 81.6%, respectively; sensitivity and specificity of reported dengue illness in a family member were 29.8% and 68.0%, and of either the individual or a family member were 40.1% and 60.5%. Notably, 13.4% of individuals reporting prior dengue illness were seronegative. Given the high occurrence of asymptomatic and mild DENV infection, self-reported dengue illness history is poorly sensitive for prior exposure and may misclassify individuals as ‘exposed’ when they were not. This analysis highlights that a simple, highly sensitive, and highly specific test for determining serostatus prior to Dengvaxia vaccination is urgently needed
Description of contact subjects living with A(H1N1)pdm09-infected cohort subjects, Kamphaeng Phet, Thailand.
a<p>≥4-fold increase in HI titer from day 0 to day 60 sera.</p>b<p>Single positive HI titer ≥1∶40.</p>c<p>Missing convalescent sample for one subject.</p><p>Description of contact subjects living with A(H1N1)pdm09-infected cohort subjects, Kamphaeng Phet, Thailand.</p
2021 Asian Pacific Society of Cardiology Consensus Recommendations on the Use of P2Y12 Receptor Antagonists in the Asia-Pacific Region: Special Populations
10.15420/ecr.2021.35European Cardiology Review16e43
Three waves of the pandemic influenza A(H1N11)pdm09 in Thailand.
<p>Source: Bureau of Epidemiology, Ministry of Public Health, Thailand.</p
Evidence of A(H1N1)pdm09 infection among cohort subjects, Kamphaeng Phet, Thailand.
a<p>HI testing not conducted in some subjects due to insufficient serum volume.</p>b<p>≥4-fold increase in HI titer of 2009/2010 sera.</p>c<p>Positive respiratory sample for A(H1N1)pdm09 by qRT-PCR or ≥4-fold increase in HI titer of paired annual sera/paired ILI sera.</p>d<p>≥4-fold increase in HI titer of paired annual sera/paired ILI sera without positive respiratory sample for A(H1N1)pdm09 by qRT-PCR.</p><p>Evidence of A(H1N1)pdm09 infection among cohort subjects, Kamphaeng Phet, Thailand.</p