56 research outputs found

    Nine-year nationwide environmental surveillance of hepatitis E virus in urban wastewaters in Italy (2011–2019)

    Get PDF
    Hepatitis E virus (HEV) is an emerging causative agent of acute hepatitis worldwide. To provide insights into the epidemiology of HEV in Italy, a large-scale investigation was conducted into urban sewage over nine years (2011–2019), collecting 1374 sewage samples from 48 wastewater treatment plants located in all the 20 regions of Italy. Broadly reactive primers targeting the ORF1 and ORF2 regions were used for the detection and typing of HEV, followed by Sanger and next generation sequencing (NGS). Real-time RT-qPCR was also used to attempt quantification of positive samples. HEV RNA detection occurred in 74 urban sewage samples (5.4%), with a statistically significant higher frequency (7.1%) in central Italy. Fifty-six samples were characterized as G3 strains and 18 as G1. While the detection of G3 strains occurred in all the surveillance period, G1 strains were mainly detected in 2011–2012, and never in 2017–2019. Typing was achieved in 2 samples (3f subtype). Viral concentrations in quantifiable samples ranged from 1.2 × 103 g.c./L to 2.8 × 104 g.c./L. Our results suggest the considerable circulation of the virus in the Italian population, despite a relatively small number of notified cases, a higher occurrence in central Italy, and a noteworthy predominance of G3 strains

    Wastewater surveillance of SARS-CoV-2 variants in October–November 2022 in Italy: detection of XBB.1, BA.2.75 and rapid spread of the BQ.1 lineage

    Get PDF
    : This study adds insight regarding the occurrence and spread of SARS-CoV-2 Variants of Concern (VOCs) and Variants of Interest (VOIs) in Italy in October and November 2022, by testing urban wastewater collected throughout the country. A total of 332 wastewater samples were collected from 20 Italian Regions/Autonomous Provinces (APs) within the framework of national SARS-CoV-2 environmental surveillance. Of these, 164 were collected in the first week of October and 168 in the first week of November. A ∌1600 bp fragment of the spike protein was sequenced by Sanger (for individual samples) and long-read nanopore sequencing (for pooled Region/AP samples). In October, mutations characteristic of Omicron BA.4/BA.5 were detected in the vast majority (91 %) of the samples amplified by Sanger sequencing. A fraction of these sequences (9 %) also displayed the R346T mutation. Despite the low prevalence documented in clinical cases at the time of sampling, amino acid substitutions characteristic of sublineages BQ.1 or BQ.1.1 were detected in 5 % of sequenced samples from four Regions/APs. A significantly higher variability of sequences and variants was documented in November 2022, when the rate of sequences harbouring mutations of lineages BQ.1 and BQ1.1 increased to 43 %, and the number of Regions/APs positive for the new Omicron subvariant more than tripled (n = 13) compared to October. Moreover, an increase in the number of sequences with the mutation package BA.4/BA.5 + R346T (18 %), as well as the detection of variants never observed before in wastewater in Italy, such as BA.2.75 and XBB.1 (the latter in a Region where no clinical cases associated with this variant had ever been documented) was recorded. The results suggest that, as predicted by the ECDC, BQ.1/BQ.1.1 is rapidly becoming dominant in late 2022. Environmental surveillance proves to be a powerful tool for tracking the spread of SARS-CoV-2 variants/subvariants in the population

    Wastewater surveillance of SARS-CoV-2 variants in October-November 2022 in Italy: detection of XBB.1, BA.2.75 and rapid spread of the BQ.1 lineage

    Get PDF
    This study adds insight regarding the occurrence and spread of SARS-CoV-2 Variants of Concern (VOCs) and Var-iants of Interest (VOIs) in Italy in October and November 2022, by testing urban wastewater collected through-out the country. A total of 332 wastewater samples were collected from 20 Italian Regions/Autonomous Provinces (APs) within the framework of national SARS-CoV-2 environmental surveillance. Of these, 164 were collected in the first week of October and 168 in the first week of November. A similar to 1600 bp fragment of the spike protein was sequenced by Sanger (for individual samples) and long-read nanopore sequencing (for pooled Region/AP samples).In October, mutations characteristic of Omicron BA.4/BA.5 were detected in the vast majority (91 %) of the samples amplified by Sanger sequencing. A fraction of these sequences (9 %) also displayed the R346T mutation. Despite the low prevalence documented in clinical cases at the time of sampling, amino acid substitutions characteristic of sublineages BQ.1 or BQ.1.1 were detected in 5 % of sequenced samples from four Regions/APs. A significantly higher variability of sequences and variants was documented in November 2022, when the rate of se-quences harbouring mutations of lineages BQ.1 and BQ1.1 increased to 43 %, and the number of Regions/APs positive for the new Omicron subvariant more than tripled (n = 13) compared to October. Moreover, an increase in the number of sequences with the mutation package BA.4/BA.5 + R346T (18 %), as well as the detection of variants never observed before in wastewater in Italy, such as BA.2.75 and XBB.1 (the latter in a Region where no clinical cases asso-ciated with this variant had ever been documented) was recorded.The results suggest that, as predicted by the ECDC, BQ.1/BQ.1.1 is rapidly becoming dominant in late 2022. Environ-mental surveillance proves to be a powerful tool for tracking the spread of SARS-CoV-2 variants/subvariants in the population

    Long-lived intestinal tuft cells serve as colon cancer-initiating cells

    Get PDF
    Doublecortin-like kinase 1 protein (DCLK1) is a gastrointestinal tuft cell marker that has been proposed to identify quiescent and tumor growth-sustaining stem cells. DCLK1+ tuft cells are increased in inflammation-induced carcinogenesis; however, the role of these cells within the gastrointestinal epithelium and their potential as cancer-initiating cells are poorly understood. Here, using a BAC-CreERT-dependent genetic lineage-tracing strategy, we determined that a subpopulation of DCLK1+ cells is extremely long lived and possesses rare stem cell abilities. Moreover, genetic ablation of Dclk1 revealed that DCLK1+ tuft cells contribute to recovery following intestinal and colonic injury. Surprisingly, conditional knockdown of the Wnt regulator APC in DCLK1+ cells was not sufficient to drive colonic carcinogenesis under normal conditions; however, dextran sodium sulfate-induced (DSS-induced) colitis promoted the development of poorly differentiated colonic adenocarcinoma in mice lacking APC in DCLK1+ cells. Importantly, colonic tumor formation occurred even when colitis onset was delayed for up to 3 months after induced APC loss in DCLK1+ cells. Thus, our data define an intestinal DCLK1+ tuft cell population that is long lived, quiescent, and important for intestinal homeostasis and regeneration. Long-lived DCLK1+ cells maintain quiescence even following oncogenic mutation, but are activated by tissue injury and can serve to initiate colon cancer

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    When bureaucracy meets the crowd:Studying ‘Open Government’ in the Vienna city administration

    Get PDF
    International audienceOpen Government is en vogue, yet vague: while practitioners, policy-makers, and others praise its virtues, little is known about how Open Government relates to bureaucratic organization. This paper presents insights from a qualitative investigation into the City of Vienna, Austria. It demonstrates how the encounter between the city administration and “the open” juxtaposes the decentralizing principles of the crowd, such as transparency, participation, and distributed cognition, with the centralizing principles of bureaucracy, such as secrecy, expert knowledge, written files, and rules. The paper explores how this theoretical conundrum is played out and how senior city managers perceive Open Government in relation to the bureaucratic nature of their administration. The purpose of this paper is twofold: first, to empirically trace the complexities of the encounter between bureaucracy and Open Government; and second, to critically theorize the ongoing rationalization of public administration in spite of constant challenges to its bureaucratic principles. In so doing, the paper advances our understanding of modern bureaucratic organizations under the condition of increased openness, transparency, and interaction with their environments.<br/
    • 

    corecore